```    Program c06ppfe

!     C06PPF Example Program Text

!     Mark 25 Release. NAG Copyright 2014.

!     .. Use Statements ..
Use nag_library, Only: c06ppf, nag_wp
!     .. Implicit None Statement ..
Implicit None
!     .. Parameters ..
Integer, Parameter               :: nin = 5, nout = 6
!     .. Local Scalars ..
Integer                          :: i, ieof, ifail, j, m, n
!     .. Local Arrays ..
Real (Kind=nag_wp), Allocatable  :: work(:), x(:)
!     .. Executable Statements ..
Write (nout,*) 'C06PPF Example Program Results'
!     Skip heading in data file
loop: Do
If (ieof<0) Exit loop

Allocate (work((m+2)*(n+2)+11),x(m*(n+2)))
Do j = 1, m
End Do
Write (nout,*)
Write (nout,*) 'Original data values'
Write (nout,*)
Do j = 1, m
Write (nout,99999) '     ', (x(i*m+j),i=0,n-1)
End Do

!       ifail: behaviour on error exit
!              =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call c06ppf('F',m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) &
'Discrete Fourier transforms in complex Hermitian format'
Do j = 1, m
Write (nout,*)
Write (nout,99999) 'Real ', (x(2*i*m+j),i=0,n/2)
Write (nout,99999) 'Imag ', (x((2*i+1)*m+j),i=0,n/2)
End Do
Write (nout,*)
Write (nout,*) 'Fourier transforms in full complex form'

Do j = 1, m
Write (nout,*)
Write (nout,99999) 'Real ', (x(2*i*m+j),i=0,n/2), &
(x(2*(n-i)*m+j),i=n/2+1,n-1)
Write (nout,99999) 'Imag ', (x((2*i+1)*m+j),i=0,n/2), &
(-x((2*(n-i)+1)*m+j),i=n/2+1,n-1)
End Do

Call c06ppf('B',m,n,x,work,ifail)

Write (nout,*)
Write (nout,*) 'Original data as restored by inverse transform'
Write (nout,*)
Do j = 1, m
Write (nout,99999) '     ', (x(i*m+j),i=0,n-1)
End Do
Deallocate (x,work)
End Do loop

99999 Format (1X,A,9(:1X,F10.4))
End Program c06ppfe
```