
NAG Library Function Document

nag_complex_bessel_j (s17dec)

1 Purpose

nag_complex_bessel_j (s17dec) returns a sequence of values for the Bessel functions J�þn zð Þ for
complex z, non-negative � and n ¼ 0; 1; . . . ; N � 1, with an option for exponential scaling.

2 Specification

#include <nag.h>
#include <nags.h>

void nag_complex_bessel_j (double fnu, Complex z, Integer n,
Nag_ScaleResType scal, Complex cy[], Integer *nz, NagError *fail)

3 Description

nag_complex_bessel_j (s17dec) evaluates a sequence of values for the Bessel function J� zð Þ, where z is
complex, �� < argz � �, and � is the real, non-negative order. The N-member sequence is generated for
orders �, � þ 1; . . . ; � þN � 1. Optionally, the sequence is scaled by the factor e� Im zð Þj j.

Note: although the function may not be called with � less than zero, for negative orders the formula
J�� zð Þ ¼ J� zð Þ cos ��ð Þ � Y� zð Þ sin ��ð Þ may be used (for the Bessel function Y� zð Þ, see
nag_complex_bessel_y (s17dcc)).

The function is derived from the function CBESJ in Amos (1986). It is based on the relations
J� zð Þ ¼ e��i=2I� �izð Þ, Im zð Þ � 0:0, and J� zð Þ ¼ e���i=2I� izð Þ, Im zð Þ < 0:0.

The Bessel function I� zð Þ is computed using a variety of techniques depending on the region under
consideration.

When N is greater than 1, extra values of J� zð Þ are computed using recurrence relations.

For very large zj j or � þN � 1ð Þ, argument reduction will cause total loss of accuracy, and so no
computation is performed. For slightly smaller zj j or � þN � 1ð Þ, the computation is performed but
results are accurate to less than half of machine precision. If Im zð Þ is large, there is a risk of overflow
and so no computation is performed. In all the above cases, a warning is given by the function.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and
non-negative order ACM Trans. Math. Software 12 265–273

5 Arguments

1: fnu – double Input

On entry: �, the order of the first member of the sequence of functions.

Constraint: fnu � 0:0.

2: z – Complex Input

On entry: the argument z of the functions.
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3: n – Integer Input

On entry: N , the number of members required in the sequence J� zð Þ; J�þ1 zð Þ; . . . ; J�þN�1 zð Þ.
Constraint: n � 1.

4: scal – Nag_ScaleResType Input

On entry: the scaling option.

scal ¼ Nag UnscaleRes
The results are returned unscaled.

scal ¼ Nag ScaleRes
The results are returned scaled by the factor e� Im zð Þj j.

Constraint: scal ¼ Nag UnscaleRes or Nag ScaleRes.

5: cy½n� – Complex Output

On exit: the N required function values: cy½i� 1� contains J�þi�1 zð Þ, for i ¼ 1; 2; . . . ; N.

6: nz – Integer * Output

On exit: the number of components of cy that are set to zero due to underflow. If nz > 0, then
elements cy½n� nz�, cy½n� nzþ 1�; . . . ; cy½n� 1� are set to zero.

7: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, n ¼ valueh i.
Constraint: n � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_OVERFLOW_LIKELY

No computation because z:im ¼ valueh i > valueh i, scal ¼ Nag UnscaleRes.
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NE_REAL

On entry, fnu ¼ valueh i.
Constraint: fnu � 0:0.

NE_TERMINATION_FAILURE

No computation – algorithm termination condition not met.

NE_TOTAL_PRECISION_LOSS

No computation because zj j ¼ valueh i > valueh i.
No computation because fnuþ n� 1 ¼ valueh i > valueh i.

NW_SOME_PRECISION_LOSS

Results lack precision because zj j ¼ valueh i > valueh i.
Results lack precision because fnuþ n� 1 ¼ valueh i > valueh i.

7 Accuracy

All constants in nag_complex_bessel_j (s17dec) are given to approximately 18 digits of precision.
Calling the number of digits of precision in the floating-point arithmetic being used t, then clearly the
maximum number of correct digits in the results obtained is limited by p ¼ min t; 18ð Þ. Because of errors
in argument reduction when computing elementary functions inside nag_complex_bessel_j (s17dec), the
actual number of correct digits is limited, in general, by p� s, where s � max 1; log10 zj jj j; log10 �j jð Þ
represents the number of digits lost due to the argument reduction. Thus the larger the values of zj j and
�, the less the precision in the result. If nag_complex_bessel_j (s17dec) is called with n > 1, then
computation of function values via recurrence may lead to some further small loss of accuracy.

If function values which should nominally be identical are computed by calls to nag_complex_bessel_j
(s17dec) with different base values of � and different n, the computed values may not agree exactly.
Empirical tests with modest values of � and z have shown that the discrepancy is limited to the least
significant 3 – 4 digits of precision.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken for a call of nag_complex_bessel_j (s17dec) is approximately proportional to the value of
n, plus a constant. In general it is much cheaper to call nag_complex_bessel_j (s17dec) with n greater
than 1, rather than to make N separate calls to nag_complex_bessel_j (s17dec).

Paradoxically, for some values of z and �, it is cheaper to call nag_complex_bessel_j (s17dec) with a
larger value of n than is required, and then discard the extra function values returned. However, it is not
possible to state the precise circumstances in which this is likely to occur. It is due to the fact that the
base value used to start recurrence may be calculated in different regions for different n, and the costs in
each region may differ greatly.

Note that if the function required is J0 xð Þ or J1 xð Þ, i.e., � ¼ 0:0 or 1:0, where x is real and positive, and
only a single unscaled function value is required, then it may be much cheaper to call nag_bessel_j0
(s17aec) or nag_bessel_j1 (s17afc) respectively.

10 Example

This example prints a caption and then proceeds to read sets of data from the input data stream. The first
datum is a value for the order fnu, the second is a complex value for the argument, z, and the third is a
character value used as a flag to set the argument scal. The program calls the function with n ¼ 2 to
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evaluate the function for orders fnu and fnuþ 1, and it prints the results. The process is repeated until
the end of the input data stream is encountered.

10.1 Program Text

/* nag_complex_bessel_j (s17dec) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 7, 2002.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{

Integer exit_status = 0;
Complex z, cy[2];
double fnu;
const Integer n = 2;
Integer nz;
char nag_enum_arg[40];
Nag_ScaleResType scal;
NagError fail;

INIT_FAIL(fail);

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

printf("nag_complex_bessel_j (s17dec) Example Program Results\n");
printf("Calling with n = %"NAG_IFMT"\n", n);
printf(" fnu z scal cy[0] "

" cy[1] nz\n");
#ifdef _WIN32

while (scanf_s(" %lf (%lf,%lf) %39s%*[^\n] ",
&fnu, &z.re, &z.im, nag_enum_arg, _countof(nag_enum_arg)) != EOF)

{
#else

while (scanf(" %lf (%lf,%lf) %39s%*[^\n] ",
&fnu, &z.re, &z.im, nag_enum_arg) != EOF)

{
#endif

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

scal = (Nag_ScaleResType) nag_enum_name_to_value(nag_enum_arg);

/* nag_complex_bessel_j (s17dec).
* Bessel functions J_(nu+a)(z), real a >= 0, complex z,
* nu = 0,1,2,...
*/

nag_complex_bessel_j(fnu, z, n, scal, cy, &nz, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_complex_bessel_j (s17dec).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
printf("%7.4f (%7.3f,%7.3f) %-14s (%7.3f,%7.3f) (%7.3f,%7.3f) "

"%"NAG_IFMT"\n", fnu, z.re, z.im, nag_enum_arg, cy[0].re,
cy[0].im, cy[1].re, cy[1].im, nz);

}
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END:

return exit_status;
}

10.2 Program Data

nag_complex_bessel_j (s17dec) Example Program Data
0.00 ( 0.3, 0.4) Nag_UnscaleRes
2.30 ( 2.0, 0.0) Nag_UnscaleRes
2.12 (-1.0, 0.0) Nag_UnscaleRes
1.58 (-2.3, 5.6) Nag_UnscaleRes
1.58 (-2.3, 5.6) Nag_ScaleRes

10.3 Program Results

nag_complex_bessel_j (s17dec) Example Program Results
Calling with n = 2

fnu z scal cy[0] cy[1] nz
0.0000 ( 0.300, 0.400) Nag_UnscaleRes ( 1.017, -0.061) ( 0.157, 0.197) 0
2.3000 ( 2.000, 0.000) Nag_UnscaleRes ( 0.272, -0.000) ( 0.089, -0.000) 0
2.1200 ( -1.000, 0.000) Nag_UnscaleRes ( 0.088, 0.035) ( -0.014, -0.006) 0
1.5800 ( -2.300, 5.600) Nag_UnscaleRes ( -1.551,-36.476) ( 25.910, 2.677) 0
1.5800 ( -2.300, 5.600) Nag_ScaleRes ( -0.006, -0.135) ( 0.096, 0.010) 0
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