
NAG Library Function Document

nag_complex_bessel_j (s17dec)

1 Purpose

nag_complex_bessel_j (s17dec) returns a sequence of values for the Bessel functions J�þn zð Þ for
complex z, non-negative � and n ¼ 0; 1; . . . ; N � 1, with an option for exponential scaling.

2 Specification

#include <nag.h>
#include <nags.h>

void nag_complex_bessel_j (double fnu, Complex z, Integer n,
Nag_ScaleResType scal, Complex cy[], Integer *nz, NagError *fail)

3 Description

nag_complex_bessel_j (s17dec) evaluates a sequence of values for the Bessel function J� zð Þ, where z is
complex, �� < argz � �, and � is the real, non-negative order. The N-member sequence is generated for
orders �, � þ 1; . . . ; � þN � 1. Optionally, the sequence is scaled by the factor e� Im zð Þj j.

Note: although the function may not be called with � less than zero, for negative orders the formula
J�� zð Þ ¼ J� zð Þ cos ��ð Þ � Y� zð Þ sin ��ð Þ may be used (for the Bessel function Y� zð Þ, see
nag_complex_bessel_y (s17dcc)).

The function is derived from the function CBESJ in Amos (1986). It is based on the relations
J� zð Þ ¼ e��i=2I� �izð Þ, Im zð Þ � 0:0, and J� zð Þ ¼ e���i=2I� izð Þ, Im zð Þ < 0:0.

The Bessel function I� zð Þ is computed using a variety of techniques depending on the region under
consideration.

When N is greater than 1, extra values of J� zð Þ are computed using recurrence relations.

For very large zj j or � þN � 1ð Þ, argument reduction will cause total loss of accuracy, and so no
computation is performed. For slightly smaller zj j or � þN � 1ð Þ, the computation is performed but
results are accurate to less than half of machine precision. If Im zð Þ is large, there is a risk of overflow
and so no computation is performed. In all the above cases, a warning is given by the function.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and
non-negative order ACM Trans. Math. Software 12 265–273

5 Arguments

1: fnu – double Input

On entry: �, the order of the first member of the sequence of functions.

Constraint: fnu � 0:0.

2: z – Complex Input

On entry: the argument z of the functions.

s – Approximations of Special Functions s17dec

Mark 25 s17dec.1

3: n – Integer Input

On entry: N , the number of members required in the sequence J� zð Þ; J�þ1 zð Þ; . . . ; J�þN�1 zð Þ.
Constraint: n � 1.

4: scal – Nag_ScaleResType Input

On entry: the scaling option.

scal ¼ Nag UnscaleRes
The results are returned unscaled.

scal ¼ Nag ScaleRes
The results are returned scaled by the factor e� Im zð Þj j.

Constraint: scal ¼ Nag UnscaleRes or Nag ScaleRes.

5: cy½n� – Complex Output

On exit: the N required function values: cy½i� 1� contains J�þi�1 zð Þ, for i ¼ 1; 2; . . . ; N.

6: nz – Integer * Output

On exit: the number of components of cy that are set to zero due to underflow. If nz > 0, then
elements cy½n� nz�, cy½n� nzþ 1�; . . . ; cy½n� 1� are set to zero.

7: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, n ¼ valueh i.
Constraint: n � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_OVERFLOW_LIKELY

No computation because z:im ¼ valueh i > valueh i, scal ¼ Nag UnscaleRes.

s17dec NAG Library Manual

s17dec.2 Mark 25

NE_REAL

On entry, fnu ¼ valueh i.
Constraint: fnu � 0:0.

NE_TERMINATION_FAILURE

No computation – algorithm termination condition not met.

NE_TOTAL_PRECISION_LOSS

No computation because zj j ¼ valueh i > valueh i.
No computation because fnuþ n� 1 ¼ valueh i > valueh i.

NW_SOME_PRECISION_LOSS

Results lack precision because zj j ¼ valueh i > valueh i.
Results lack precision because fnuþ n� 1 ¼ valueh i > valueh i.

7 Accuracy

All constants in nag_complex_bessel_j (s17dec) are given to approximately 18 digits of precision.
Calling the number of digits of precision in the floating-point arithmetic being used t, then clearly the
maximum number of correct digits in the results obtained is limited by p ¼ min t; 18ð Þ. Because of errors
in argument reduction when computing elementary functions inside nag_complex_bessel_j (s17dec), the
actual number of correct digits is limited, in general, by p� s, where s � max 1; log10 zj jj j; log10 �j jð Þ
represents the number of digits lost due to the argument reduction. Thus the larger the values of zj j and
�, the less the precision in the result. If nag_complex_bessel_j (s17dec) is called with n > 1, then
computation of function values via recurrence may lead to some further small loss of accuracy.

If function values which should nominally be identical are computed by calls to nag_complex_bessel_j
(s17dec) with different base values of � and different n, the computed values may not agree exactly.
Empirical tests with modest values of � and z have shown that the discrepancy is limited to the least
significant 3 – 4 digits of precision.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken for a call of nag_complex_bessel_j (s17dec) is approximately proportional to the value of
n, plus a constant. In general it is much cheaper to call nag_complex_bessel_j (s17dec) with n greater
than 1, rather than to make N separate calls to nag_complex_bessel_j (s17dec).

Paradoxically, for some values of z and �, it is cheaper to call nag_complex_bessel_j (s17dec) with a
larger value of n than is required, and then discard the extra function values returned. However, it is not
possible to state the precise circumstances in which this is likely to occur. It is due to the fact that the
base value used to start recurrence may be calculated in different regions for different n, and the costs in
each region may differ greatly.

Note that if the function required is J0 xð Þ or J1 xð Þ, i.e., � ¼ 0:0 or 1:0, where x is real and positive, and
only a single unscaled function value is required, then it may be much cheaper to call nag_bessel_j0
(s17aec) or nag_bessel_j1 (s17afc) respectively.

10 Example

This example prints a caption and then proceeds to read sets of data from the input data stream. The first
datum is a value for the order fnu, the second is a complex value for the argument, z, and the third is a
character value used as a flag to set the argument scal. The program calls the function with n ¼ 2 to

s – Approximations of Special Functions s17dec

Mark 25 s17dec.3

evaluate the function for orders fnu and fnuþ 1, and it prints the results. The process is repeated until
the end of the input data stream is encountered.

10.1 Program Text

/* nag_complex_bessel_j (s17dec) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 7, 2002.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{

Integer exit_status = 0;
Complex z, cy[2];
double fnu;
const Integer n = 2;
Integer nz;
char nag_enum_arg[40];
Nag_ScaleResType scal;
NagError fail;

INIT_FAIL(fail);

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

printf("nag_complex_bessel_j (s17dec) Example Program Results\n");
printf("Calling with n = %"NAG_IFMT"\n", n);
printf(" fnu z scal cy[0] "

" cy[1] nz\n");
#ifdef _WIN32

while (scanf_s(" %lf (%lf,%lf) %39s%*[^\n] ",
&fnu, &z.re, &z.im, nag_enum_arg, _countof(nag_enum_arg)) != EOF)

{
#else

while (scanf(" %lf (%lf,%lf) %39s%*[^\n] ",
&fnu, &z.re, &z.im, nag_enum_arg) != EOF)

{
#endif

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

scal = (Nag_ScaleResType) nag_enum_name_to_value(nag_enum_arg);

/* nag_complex_bessel_j (s17dec).
* Bessel functions J_(nu+a)(z), real a >= 0, complex z,
* nu = 0,1,2,...
*/

nag_complex_bessel_j(fnu, z, n, scal, cy, &nz, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_complex_bessel_j (s17dec).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
printf("%7.4f (%7.3f,%7.3f) %-14s (%7.3f,%7.3f) (%7.3f,%7.3f) "

"%"NAG_IFMT"\n", fnu, z.re, z.im, nag_enum_arg, cy[0].re,
cy[0].im, cy[1].re, cy[1].im, nz);

}

s17dec NAG Library Manual

s17dec.4 Mark 25

END:

return exit_status;
}

10.2 Program Data

nag_complex_bessel_j (s17dec) Example Program Data
0.00 (0.3, 0.4) Nag_UnscaleRes
2.30 (2.0, 0.0) Nag_UnscaleRes
2.12 (-1.0, 0.0) Nag_UnscaleRes
1.58 (-2.3, 5.6) Nag_UnscaleRes
1.58 (-2.3, 5.6) Nag_ScaleRes

10.3 Program Results

nag_complex_bessel_j (s17dec) Example Program Results
Calling with n = 2

fnu z scal cy[0] cy[1] nz
0.0000 (0.300, 0.400) Nag_UnscaleRes (1.017, -0.061) (0.157, 0.197) 0
2.3000 (2.000, 0.000) Nag_UnscaleRes (0.272, -0.000) (0.089, -0.000) 0
2.1200 (-1.000, 0.000) Nag_UnscaleRes (0.088, 0.035) (-0.014, -0.006) 0
1.5800 (-2.300, 5.600) Nag_UnscaleRes (-1.551,-36.476) (25.910, 2.677) 0
1.5800 (-2.300, 5.600) Nag_ScaleRes (-0.006, -0.135) (0.096, 0.010) 0

s – Approximations of Special Functions s17dec

Mark 25 s17dec.5 (last)

	s17dec
	1 Purpose
	2 Specification
	3 Description
	4 References
	Abramowitz and Stegun (1972)
	Amos (1986)

	5 Arguments
	fnu
	z
	n
	scal
	cy
	nz
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_OVERFLOW_LIKELY
	NE_REAL
	NE_TERMINATION_FAILURE
	NE_TOTAL_PRECISION_LOSS
	NW_SOME_PRECISION_LOSS

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

