
NAG Library

Advice on Replacement Calls for Withdrawn/Superseded Functions

The following list gives the names of functions that are suitable replacements for functions that have
either been withdrawn or superseded since Mark 23.

The list indicates the minimum change necessary, but many of the replacement functions have additional
flexibility and you may wish to take advantage of new features. It is strongly recommended that you
consult the function documents.

c05 – Roots of One or More Transcendental Equations

nag_zero_cont_func_bd (c05adc)

Withdrawn at Mark 24.
Replaced by nag_zero_cont_func_brent (c05ayc).

Old: double f(double xx)
{

...
}

...
nag_zero_cont_func_bd(a, b, &x, f, xtol, ftol, &fail);

New: double f(double xx, Nag_Comm *comm)
{

...
}

...
Nag_Comm comm;
...
nag_zero_cont_func_brent(a, b, xtol, ftol, f, &x, &comm, &fail);

nag_zero_cont_func_brent_bsrch (c05agc)

Withdrawn at Mark 25.
Replaced by nag_zero_cont_func_brent_binsrch (c05auc).

Old: nag_zero_cont_func_brent_bsrch(...);
New: nag_zero_cont_func_brent_binsrch(...);

nag_zero_nonlin_eqns (c05nbc)

Withdrawn at Mark 24.
Replaced by nag_zero_nonlin_eqns_easy (c05qbc).

Old: void f(Integer n, const double x[], double fvec[], Integer *userflag)
{

...
}

...
nag_zero_nonlin_eqns(n, x, fvec, f, xtol, &fail);

New: void fcn(Integer n, const double x[], double fvec[], Nag_Comm *comm,
Integer *userflag)

{
...

}
...
Nag_Comm comm;
...
nag_zero_nonlin_eqns_easy(fcn, n, x, fvec, xtol, &comm, &fail);

Introduction Replacement Calls

Mark 25 replace.1

nag_zero_nonlin_eqns_deriv (c05pbc)

Withdrawn at Mark 24.
Replaced by nag_zero_nonlin_eqns_deriv_easy (c05rbc).

Old: void f(Integer n, double x[], double fvec[], double fjac[],
Integer tdfjac, Integer *userflag)

{
...

}
...
fjac = NAG_ALLOC(n*tdfjac, double);
...
nag_zero_nonlin_eqns_deriv(n, x, fvec, fjac, tdfjac, f, xtol, &fail);

New: void fcn(Integer n, double x[], double fvec[], double fjac[],
Nag_Comm *comm, Integer *iflag)

{
...

}
...
Nag_Comm comm;
...
fjac = NAG_ALLOC(n*n, double);
...
nag_zero_nonlin_eqns_deriv_easy(fcn, n, x, fvec, fjac, xtol, &comm,

&fail);

nag_zero_cont_func_bd_1 (c05sdc)

Withdrawn at Mark 25.
Replaced by nag_zero_cont_func_brent (c05ayc).

Old: double f(double x, Nag_User *comm)
{

...
}

...
Nag_User comm;
...
nag_zero_cont_func_bd_1(a, b, &x, f, xtol, ftol, &comm, &fail);

New: double f(double xx, Nag_Comm *comm)
{

...
}

...
Nag_Comm comm;
...
nag_zero_cont_func_brent(a, b, xtol, ftol, f, &x, &comm, &fail);

Note that the communication structure comm is now of type Nag_Comm (see Section 3.2.1.1 in the
Essential Introduction) rather than Nag_User (see Section 3.2.1.1 in the Essential Introduction).

Replacement Calls NAG Library Manual

replace.2 Mark 25

nag_zero_nonlin_eqns_1 (c05tbc)

Withdrawn at Mark 24.
Replaced by nag_zero_nonlin_eqns_easy (c05qbc).

Old: void f(Integer n, const double x[], double fvec[], Integer *userflag,
Nag_User *comm)

{
...

}
...
Nag_User comm;
...
nag_zero_nonlin_eqns_1(n, x, fvec, fcn, xtol, &comm, &fail);

New: void fcn(Integer n, const double x[], double fvec[], Nag_Comm *comm,
Integer *userflag)

{
...

}
...
Nag_Comm comm;
...
nag_zero_nonlin_eqns_easy(fcn, n, x, fvec, xtol, &comm, &fail);

Note that the communication structure comm is now of type Nag_Comm (see Section 3.2.1.1 in the
Essential Introduction) rather than Nag_User (see Section 3.2.1.1 in the Essential Introduction).

nag_zero_nonlin_eqns_deriv_1 (c05ubc)

Withdrawn at Mark 25.
Replaced by nag_zero_nonlin_eqns_deriv_easy (c05rbc).

Old: void f(Integer n, double x[], double fvec[], double fjac[],
Integer tdfjac, Integer *userflag, Nag_User *comm)

{
...

}
...
Nag_User comm;
...
fjac = NAG_ALLOC(n*tdfjac, double);
...
nag_zero_nonlin_eqns_deriv_1(n, x, fvec, fjac, tdfjac, f, xtol,

&comm, &fail);
New: void fcn(Integer n, double x[], double fvec[], double fjac[],

Nag_Comm *comm, Integer *userflag)
{

...
}

...
Nag_Comm comm;
...
fjac = NAG_ALLOC(n*n, double);
...
nag_zero_nonlin_eqns_deriv_easy(fcn, n, x, fvec, fjac, xtol, &comm,

&fail);

Note that the communication structure comm is now of type Nag_Comm (see Section 3.2.1.1 in the
Essential Introduction) rather than Nag_User (see Section 3.2.1.1 in the Essential Introduction).

Introduction Replacement Calls

Mark 25 replace.3

nag_check_deriv (c05zbc)

Withdrawn at Mark 24.
Replaced by nag_check_derivs (c05zdc).

Old: nag_check_deriv(n, x, fvec, fjac, tdfjac, f, &fail);
New: Integer mode, m;

double *xp = 0, *fvecp = 0, *err = 0;
m = n;
mode = 1;
nag_check_derivs(mode, m, n, x, fvec, fjac, xp, fvecp, err, &fail);
/* Set fvec to the function values at the original point x and fvecp
* to the function values at the update point xp. */

mode = 2;
nag_check_derivs(mode, m, n, x, fvec, fjac, xp, fvecp, err, &fail);
/* Check the contents of err for the measures of correctness of each
* gradient. */

nag_check_deriv_1 (c05zcc)

Withdrawn at Mark 24.
Replaced by nag_check_derivs (c05zdc).

Old: nag_check_deriv_1(n, x, fvec, fjac, tdfjac, f, &comm, &fail);
New: Integer mode, m;

double *xp = 0, *fvecp = 0, *err = 0;
m = n;
mode = 1;
nag_check_derivs(mode, m, n, x, fvec, fjac, xp, fvecp, err, &fail);
/* Set fvec to the function values at the original point x and fvecp
* to the function values at the update point xp. */

mode = 2;
nag_check_derivs(mode, m, n, x, fvec, fjac, xp, fvecp, err, &fail);
/* Check the contents of err for the measures of correctness of each
* gradient. */

c06 – Fourier Transforms

nag_fft_real (c06eac)

Scheduled for withdrawal at Mark 26.
Replaced by nag_sum_fft_realherm_1d (c06pac).

Old: nag_fft_real(n, x, &fail);
New: nag_sum_fft_realherm_1d(Nag_ForwardTransform, x, n, &fail);

where the dimension of the array x has been extended from the original n to nþ 2. The output values x
are stored in a different order with real and imaginary parts stored contiguously. The mapping of output
elements is as follows:

x½2� i � 1� x½i � 1�, for i ¼ 0; 1; . . . ; n=2 and
x½2� i� x½n� i � 1�, for i ¼ 1; 2; . . . ; nþ 1ð Þ=2.

nag_fft_hermitian (c06ebc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_sum_fft_realherm_1d (c06pac).

Old: nag_fft_hermitian(n, x, &fail);
New: nag_sum_fft_realherm_1d(Nag_BackwardTransform, x, n, &fail);

where the dimension of the array x has been extended from the original n to nþ 2. The input values of x
are stored in a different order with real and imaginary parts stored contiguously. Also
nag_sum_fft_realherm_1d (c06pac) performs the inverse transform without the need to first conjugate.
If prior conjugation of original array x is assumed then the mapping of input elements is:

x½2� i � 1� x½i � 1�, for i ¼ 0; 1; . . . ; n=2 and
x½2� i� x½n� i � 1�, for i ¼ 1; 2; . . . ; n� 1ð Þ=2.

Replacement Calls NAG Library Manual

replace.4 Mark 25

nag_fft_complex (c06ecc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_sum_fft_complex_1d (c06pcc).

Old: nag_fft_complex(n, x, y, &fail);
New: nag_sum_fft_complex_1d(Nag_ForwardTransform, z, n, &fail);

where z is a complex array of length n such that z½i�:re ¼ x½i� and z½i�:im ¼ y½i� , for i ¼ 0; 1; . . . n� 1
on input and output.

nag_convolution_real (c06ekc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_sum_convcorr_real (c06fkc).

Old: nag_convolution_real(job, n, x, y, &fail);
New: nag_sum_convcorr_real(job, x, y, n, &fail);

nag_fft_multiple_complex (c06frc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_sum_fft_complex_1d_multi (c06psc).

Old: nag_fft_multiple_complex(m, n, x, y, trig, &fail);
New: nag_sum_fft_complex_1d_multi(Nag_ForwardTransform, n, m, z, &fail);

where z is a complex array of length m� n such that z½i�:re ¼ x½i� and z½i�:im ¼ y½i�, for
i ¼ 0; 1; . . . ;m� n� 1 on input and output.

nag_fft_2d_complex (c06fuc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_sum_fft_complex_2d (c06puc).

Old: nag_fft_2d_complex(m, n, x, y, trigm, trign, &fail);
New: nag_sum_fft_complex_2d(Nag_ForwardTransform, m, n, z, &fail);

where z is a complex array of length m� n such that z½i�:re ¼ x½i� and z½i�:im ¼ y½i� , for
i ¼ 0; 1; . . . ;m� n� 1 on input and output.

nag_conjugate_hermitian (c06gbc)

Scheduled for withdrawal at Mark 26.
There is no replacement for this function.

nag_conjugate_complex (c06gcc)

Scheduled for withdrawal at Mark 26.
There is no replacement for this function.

nag_fft_multiple_sine (c06hac)

Scheduled for withdrawal at Mark 26.
Replaced by nag_sum_fft_sine (c06rec).

Old: nag_fft_multiple_sine(m, n, x, trig, &fail);
New: nag_sum_fft_sine(m, n, x, &fail);

nag_fft_multiple_cosine (c06hbc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_sum_fft_cosine (c06rfc).

Old: nag_fft_multiple_cosine(m, n, x, trig, &fail);
New: nag_sum_fft_cosine(m, n, x, &fail);

Introduction Replacement Calls

Mark 25 replace.5

nag_fft_multiple_qtr_sine (c06hcc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_sum_fft_qtrsine (c06rgc).

Old: nag_fft_multiple_qtr_sine(direct, m, n, x, trig, &fail);
New: nag_sum_fft_qtrsine(direct, m, n, x, &fail);

nag_fft_multiple_qtr_cosine (c06hdc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_sum_fft_qtrcosine (c06rhc).

Old: nag_fft_multiple_qtr_cosine(direct, m, n, x, trig, &fail);
New: nag_sum_fft_qtrcosine(direct, m, n, x, &fail);

d01 – Quadrature

nag_1d_quad_gen (d01ajc)

Withdrawn at Mark 24.
Replaced by nag_1d_quad_gen_1 (d01sjc).

Where comm, a pointer to a structure of type Nag_User, has been added to allow you to pass
information to the user-supplied function f.

nag_1d_quad_osc (d01akc)

Withdrawn at Mark 24.
Replaced by nag_1d_quad_osc_1 (d01skc).

Where comm, a pointer to a structure of type Nag_User, has been added to allow you to pass
information to the user-supplied function f.

nag_1d_quad_brkpts (d01alc)

Withdrawn at Mark 24.
Replaced by nag_1d_quad_brkpts_1 (d01slc).

Where comm, a pointer to a structure of type Nag_User, has been added to allow you to pass
information to the user-supplied function f.

nag_1d_quad_inf (d01amc)

Withdrawn at Mark 24.
Replaced by nag_1d_quad_inf_1 (d01smc).

Where comm, a pointer to a structure of type Nag_User, has been added to allow you to pass
information to the user-supplied function f.

nag_1d_quad_wt_trig (d01anc)

Withdrawn at Mark 24.
Replaced by nag_1d_quad_wt_trig_1 (d01snc).

Where comm, a pointer to a structure of type Nag_User, has been added to allow you to pass
information to the user-supplied function g.

nag_1d_quad_wt_alglog (d01apc)

Withdrawn at Mark 24.
Replaced by nag_1d_quad_wt_alglog_1 (d01spc).

Where comm, a pointer to a structure of type Nag_User, has been added to allow you to pass
information to the user-supplied function g.

Replacement Calls NAG Library Manual

replace.6 Mark 25

nag_1d_quad_wt_cauchy (d01aqc)

Withdrawn at Mark 24.
Replaced by nag_1d_quad_wt_cauchy_1 (d01sqc).

Where comm, a pointer to a structure of type Nag_User, has been added to allow you to pass
information to the user-supplied function g.

nag_1d_quad_inf_wt_trig (d01asc)

Withdrawn at Mark 24.
Replaced by nag_1d_quad_inf_wt_trig_1 (d01ssc).

Where comm, a pointer to a structure of type Nag_User, has been added to allow you to pass
information to the user-supplied function g.

nag_1d_quad_gauss (d01bac)

Withdrawn at Mark 24.
Replaced by nag_quad_1d_gauss_vec (d01uac).

Old: double fun (double x)
dinest = nag_1d_quad_gauss(quadrule, fun, a, b, n, &fail);

New: void f (const double x[], Integer nx, double fv[], Integer *iflag,
Nag_Comm *comm)
nag_quad_1d_gauss_vec(quad_type, a, b, n, f, &dinest, &comm,

&fail);

Replace quadrule with quad_type as follows:

Nag_Legendre with Nag_Quad_Gauss_Legendre;

Nag_Rational with Nag_Quad_Gauss_Rational_Adjusted;

Nag_Laguerre with Nag_Quad_Gauss_Laguerre;

Nag_Hermite with Nag_Quad_Gauss_Hermite.

comm is a pointer to a structure of type Nag_Comm available to allow you to pass information to the
user-supplied function f.

iflag is an integer which you may use to force an immediate exit from nag_quad_1d_gauss_vec (d01uac)
in case of an error in the user-supplied function f.

f may be used to call the original fun as follows, although it may be more efficient to recode the
integrand.

void f(const double x[], const Integer nx, double fv[], Integer *iflag,
Nag_Comm *comm)

{
Integer i;
for(i=0; i<nx; i++)
{

fv[i] = fun(x[i]);
}

}

nag_multid_quad_adapt (d01fcc)

Withdrawn at Mark 25.
Replaced by nag_multid_quad_adapt_1 (d01wcc).

Where comm, a pointer to a structure of type Nag_User, has been added to allow you to pass
information to the user-supplied function f.

nag_multid_quad_monte_carlo (d01gbc)

Withdrawn at Mark 25.
Replaced by nag_multid_quad_monte_carlo_1 (d01xbc).

Introduction Replacement Calls

Mark 25 replace.7

Where comm, a pointer to a structure of type Nag_User, has been added to allow you to pass
information to the user-supplied function f.

nag_1d_quad_gauss_1 (d01tac)

Scheduled for withdrawal at Mark 27.
Replaced by nag_quad_1d_gauss_vec (d01uac).

d02 – Ordinary Differential Equations

nag_ode_ivp_rk_range (d02pcc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_ode_ivp_rkts_range (d02pec) and associated d02p functions.

Old: nag_ode_ivp_rk_setup(n, tstart, yinit, tend, tol, thres, method, task,
errass, hstart, &opt, &fail);

...
nag_ode_ivp_rk_range(n, f, twant, &tgot, ygot, ypgot, ymax, &opt,

&comm,
&fail);

New: nag_ode_ivp_rkts_setup(n, tstart, tend, yinit, tol, thres, method,
errass, hstart, iwsav, rwsav, &fail);

...
nag_ode_ivp_rkts_range(f2, n, twant, &tgot, ygot, ypgot, ymax,

&comm2, iwsav, rwsav, &fail);

iwsav is an Integer array of length 130 and rwsav is a double array of length 350þ 32� n.

comm2 is a pointer to a structure of type Nag_Comm available to allow you to pass information to the
user defined function f2 (see f in nag_ode_ivp_rkts_range (d02pec)).

The definition of f2 (see f in nag_ode_ivp_rkts_range (d02pec)) can use the original function f as
follows:

void f2(double t, Integer n, const double *y, double *yp, Nag_Comm *comm2)
{

Nag_User comm;
f(n, t, y, yp, &comm);

}

nag_ode_ivp_rk_onestep (d02pdc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_ode_ivp_rkts_onestep (d02pfc) and associated d02p functions.

Old: nag_ode_ivp_rk_setup(n, tstart, yinit, tend, tol, thres, method, task,
errass, hstart, &opt, &fail);

nag_ode_ivp_rk_onestep(n, f, &tnow, ynow, ypnow, &opt, &comm,
&fail);

New: nag_ode_ivp_rkts_setup(n, tstart, tend, yinit, tol, thres, method,
errass, hstart, iwsav, rwsav, &fail);

nag_ode_ivp_rkts_onestep(f2, n, &tnow, ynow, ypnow, &comm2, iwsav,
rwsav, &fail);

iwsav is an Integer array of length 130 and rwsav is a double array of length 350þ 32� n.

comm2 is a pointer to a structure of type Nag_Comm available to allow you to pass information to the
user defined function f2 (see f in nag_ode_ivp_rkts_range (d02pec)).

The definition of f2 (see f in nag_ode_ivp_rkts_range (d02pec)) can use the original function f as
follows:

void f2(double t, Integer n, const double *y, double *yp, Nag_Comm *comm2)
{

Nag_User comm;
f(n, t, y, yp, &comm);

}

Replacement Calls NAG Library Manual

replace.8 Mark 25

nag_ode_ivp_rk_free (d02ppc)

Scheduled for withdrawal at Mark 26.
There is no replacement for this function.

nag_ode_ivp_rk_setup (d02pvc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_ode_ivp_rkts_setup (d02pqc).

See nag_ode_ivp_rk_range (d02pcc) and nag_ode_ivp_rk_onestep (d02pdc) for further information.

nag_ode_ivp_rk_reset_tend (d02pwc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_ode_ivp_rkts_reset_tend (d02prc).

Old: nag_ode_ivp_rk_reset_tend(tendnu, &opt, &fail);
New: nag_ode_ivp_rkts_reset_tend(tendnu, iwsav, rwsav, &fail);

iwsav is an Integer array of length 130 and rwsav is a double array of length 350.

nag_ode_ivp_rk_interp (d02pxc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_ode_ivp_rkts_interp (d02psc).

Old: nag_ode_ivp_rk_interp(n, twant, request, nwant, ywant, ypwant, f,
&opt, &comm, &fail);

New: nag_ode_ivp_rkts_interp(n, twant, request, nwant, ywant, ypwant, f2,
wcomm, lwcomm, &comm2, iwsav, rwsav, &fail);

iwsav is an Integer array of length 130 and rwsav is a double array of length 350þ 32� n.

comm2 is a pointer to a structure of type Nag_Comm available to allow you to pass information to the
user defined function f2 (see f in nag_ode_ivp_rkts_interp (d02psc)).

wcomm is a double array of length lwcomm. See the function document for nag_ode_ivp_rkts_interp
(d02psc) for further information.

The definition of f2 (see f in nag_ode_ivp_rkts_interp (d02psc)) can use the original function f as
follows:

void f2(double t, Integer n, const double *y, double *yp, Nag_Comm *comm2)
{

Nag_User comm;
f(n, t, y, yp, &comm);

}

nag_ode_ivp_rk_errass (d02pzc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_ode_ivp_rkts_errass (d02puc).

Old: nag_ode_ivp_rk_errass(n, rmserr, &errmax, &terrmx, &opt, &fail);
New: nag_ode_ivp_rkts_errass(n, rmserr, &errmax, &terrmx, iwsav, rwsav,

&fail);

n must be unchanged from that passed to nag_ode_ivp_rkts_setup (d02pqc).

iwsav is an Integer array of length 130 and rwsav is a double array of length 350þ 32� n.

e01 – Interpolation

nag_2d_scat_interpolant (e01sac)

Withdrawn at Mark 23.
Replaced by nag_2d_shep_interp (e01sgc) or nag_2d_triang_interp (e01sjc).

Introduction Replacement Calls

Mark 25 replace.9

nag_2d_scat_interpolant (e01sac) generates a two-dimensional surface interpolating a set of scattered
data points, using either the method of Renka and Cline or a modification of Shepard’s method. The
replacement functions separate these two methods. e01sac_rk.c (see http://www.nag.co.uk/numeric/cl/
nagdoc_cl25/examples/replaced/e01sac_rk.c) provides replacement call information for the Renka and
Cline method (nag_2d_shep_interp (e01sgc)) and e01sac_shep.c (see http://www.nag.co.uk/numeric/cl/
nagdoc_cl25/examples/replaced/e01sac_shep.c) provides replacement call information for the Shepard’s
method (nag_2d_triang_interp (e01sjc)).

nag_2d_scat_eval (e01sbc)

Withdrawn at Mark 23.
Replaced by nag_2d_shep_eval (e01shc) or nag_2d_triang_eval (e01skc).

See the example program e01sac_rk.c (see http://www.nag.co.uk/numeric/cl/nagdoc_cl25/examples/
replaced/e01sac_rk.c) and e01sac_shep.c (see http://www.nag.co.uk/numeric/cl/nagdoc_cl25/examples/
replaced/e01sac_shep.c) for full details.

nag_2d_scat_free (e01szc)

Withdrawn at Mark 23.
There is no replacement for this function.

e04 – Minimizing or Maximizing a Function

nag_opt_simplex (e04ccc)

Withdrawn at Mark 24.
Replaced by nag_opt_simplex_easy (e04cbc).

Old: nag_opt_simplex(n, funct, x, &objf, &options, &comm, &fail);
New: nag_opt_simplex_easy(n, x, &objf, tolf, tolx, funct, monit, maxcal,

&comm, &fail);

The options structure has been removed from nag_opt_simplex (e04ccc). The optim_tol and max_iter
members of the options structure have been introduced as the arguments tolf and maxcal, respectively.
tolx is an additional argument to control tolerance. A new user defined function monit has been added to
allow you to monitor the optimization process. If no monitoring is required, monit may be specified as
NULLFN.

nag_opt_bounds_no_deriv (e04jbc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_opt_nlp (e04ucc).

See the example program e04jbce.c (see http://www.nag.co.uk/numeric/cl/nagdoc_cl25/examples/
replaced/e04jbce.c) for code demonstrating how to use nag_opt_nlp (e04ucc) instead of nag_opt_-
bounds_no_deriv (e04jbc).

f01 – Matrix Operations, Including Inversion

nag_complex_cholesky (f01bnc)

Withdrawn at Mark 25.
Replaced by nag_zpotrf (f07frc).

If you were only using nag_complex_cholesky (f01bnc) in order to feed its results into
nag_hermitian_lin_eqn_mult_rhs (f04awc), then the simple replacement function given further below,
in the section for nag_hermitian_lin_eqn_mult_rhs (f04awc), will suffice. A more thorough replacement

Replacement Calls NAG Library Manual

replace.10 Mark 25

http://www.nag.co.uk/numeric/cl/nagdoc_cl25/examples/replaced/e01sac_rk.c
http://www.nag.co.uk/numeric/cl/nagdoc_cl25/examples/replaced/e01sac_shep.c
http://www.nag.co.uk/numeric/cl/nagdoc_cl25/examples/replaced/e01sac_rk.c
http://www.nag.co.uk/numeric/cl/nagdoc_cl25/examples/replaced/e01sac_shep.c
http://www.nag.co.uk/numeric/cl/nagdoc_cl25/examples/replaced/e04jbce.c

function is given here and it will put the same values in arrays a and p as nag_complex_cholesky
(f01bnc) did.

void f01bnc_replacement(Integer n, Complex a[], Integer tda, double p[],
NagError *fail)

{
Integer i, pdb=n;
Complex *b;

b = NAG_ALLOC(n*n, Complex);
/* replacement factorization routine requires the upper triangle

to be stored for U^H*U, but f01bnc expects the lower triangle
to be stored so put the lower triangle of a into the upper
triangle of b */

/* nag_zge_copy */
f16tfc(Nag_RowMajor, Nag_ConjTrans, n, n, a, tda, b, pdb, fail);
/* factorize b */
/* nag_zpotrf */
f07frc(Nag_RowMajor, Nag_Upper, n, b,pdb, fail);
/* diagonal elements to populate the p array */
for (i = 0; i < n; ++i) p[i] = 1.0/b[i*tda+i].re;
/* overwrite the off-diagonal upper triangle of a with U */
/* nag_ztr_copy */
f16tec(Nag_RowMajor, Nag_Upper, Nag_NoTrans, Nag_UnitDiag, n, b, pdb, a,

tda, fail);
NAG_FREE(b);

}

nag_real_qr (f01qcc)

Withdrawn at Mark 25.
Replaced by nag_dgeqrf (f08aec).

The subdiagonal elements of a and the elements of zeta returned by nag_dgeqrf (f08aec) are not the
same as those returned by nag_real_qr (f01qcc). Subsequent calls to nag_real_apply_q (f01qdc) or
nag_real_form_q (f01qec) must also be replaced by calls to nag_dorgqr (f08afc) or nag_dormqr (f08agc)
as shown below.

void f01qcc_replacement(Integer m, Integer n, double a[], Integer tda,
double zeta[], NagError *fail)

{
/* nag_dgeqrf */
f08aec(Nag_RowMajor, m, n, a, tda, zeta, fail);
/* the factorization in a and zeta will be stored differently */

}

nag_real_apply_q (f01qdc)

Withdrawn at Mark 25.
Replaced by nag_dormqr (f08agc).

The following replacement is valid only if the previous call to nag_real_qr (f01qcc) has been replaced by
a call to nag_dgeqrf (f08aec) as shown below. It also assumes that the second argument of

Introduction Replacement Calls

Mark 25 replace.11

nag_real_apply_q (f01qdc) is set to wheret ¼ Nag ElementsSeparate, which is appropriate if the
contents of a and zeta have not been changed after the call of nag_real_qr (f01qcc).

void f01qcc_replacement(Integer m, Integer n, double a[], Integer tda,
double zeta[], NagError *fail)

{
/* nag_dgeqrf */
f08aec(Nag_RowMajor, m, n, a, tda, zeta, fail);
/* the factorization in a and zeta will be stored differently */ }

void f01qdc_replacement(MatrixTranspose trans, Nag_WhereElements wheret,
Integer m, Integer n, double a[], Integer tda, const double zeta[],
Integer ncolb, double b[], Integer tdb, NagError *fail) {
Nag_TransType t = (trans==NoTranspose)? Nag_NoTrans : Nag_Trans;
/* nag_dormqr */
f08agc(Nag_RowMajor, Nag_LeftSide, t, m, ncolb, n, a, tda, zeta,
b, tdb, fail);

}

nag_real_form_q (f01qec)

Withdrawn at Mark 25.
Replaced by nag_dorgqr (f08afc).

The following replacement is valid only if the previous call to nag_real_qr (f01qcc) has been replaced by
a call to nag_dgeqrf (f08aec) as shown below. It also assumes that the first argument of nag_real_form_q
(f01qec) is set to wheret ¼ Nag ElementsSeparate, which is appropriate if the contents of a and zeta
have not been changed after the call of nag_real_qr (f01qcc).

void f01qcc_replacement(Integer m, Integer n, double a[], Integer tda,
double zeta[], NagError *fail)

{
/* nag_dgeqrf */
f08aec(Nag_RowMajor, m, n, a, tda, zeta, fail);
/* the factorization in a and zeta will be stored differently */

}

void f01qec_replacement(Nag_WhereElements wheret, Integer m, Integer n,
Integer ncolq, double a[], Integer tda, const double zeta[],
NagError *fail)

{
/* factorization performed by nag_dgeqrf (f08aec) */
/* nag_dorgqr */
f08afc(Nag_RowMajor, m, ncolq, n, a, tda, zeta, fail);

}

nag_complex_qr (f01rcc)

Withdrawn at Mark 25.
Replaced by nag_zgeqrf (f08asc).

The subdiagonal elements of a and the elements of theta returned by nag_zgeqrf (f08asc) are not the
same as those returned by nag_complex_qr (f01rcc). Subsequent calls to nag_complex_apply_q (f01rdc)
or nag_complex_form_q (f01rec) must also be replaced by calls to nag_zunmqr (f08auc) or nag_zungqr
(f08atc) as shown below.

void f01rcc_replacement(Integer m, Integer n, Complex a[], Integer tda,
Complex theta[], NagError *fail)

{
/* nag_zgeqrf */
f08asc(Nag_RowMajor, m, n, a, tda, theta, fail);
/* the factorization in a and theta will be stored differently */

}

nag_complex_apply_q (f01rdc)

Withdrawn at Mark 25.
Replaced by nag_zunmqr (f08auc).

Replacement Calls NAG Library Manual

replace.12 Mark 25

The following replacement is valid only if the previous call to nag_complex_qr (f01rcc) has been
replaced by a call to nag_zgeqrf (f08asc) as shown below. It also assumes that the second argument of
nag_complex_apply_q (f01rdc) is set to wheret ¼ Nag ElementsSeparate, which is appropriate if the
contents of a and theta have not been changed after the call of nag_complex_qr (f01rcc).

void f01rcc_replacement(Integer m, Integer n, Complex a[], Integer tda,
Complex theta[], NagError *fail)

{
/* nag_zgeqrf */
f08asc(Nag_RowMajor, m, n, a, tda, theta, fail);
/* the factorization in a and theta will be stored differently */

}

void f01rdc_replacement(MatrixTranspose trans, Nag_WhereElements wheret,
Integer m, Integer n, Complex a[], Integer tda, const Complex theta[],
Integer ncolb, Complex b[], Integer tdb, NagError *fail)

{
Nag_TransType t = (trans==NoTranspose)? Nag_NoTrans : Nag_ConjTrans;
/* nag_zunmqr */
f08auc(Nag_RowMajor, Nag_LeftSide, t, m, ncolb, n, a, tda, theta,
b, tdb, fail);

}

nag_complex_form_q (f01rec)

Withdrawn at Mark 25.
Replaced by nag_zungqr (f08atc).

The following replacement is valid only if the previous call to nag_complex_qr (f01rcc) has been
replaced by a call to nag_zgeqrf (f08asc) as shown below. It also assumes that the first argument of
nag_complex_form_q (f01rec) is set to wheret ¼ Nag ElementsSeparate, which is appropriate if the
contents of a and theta have not been changed after the call of nag_complex_qr (f01rcc).

void f01rcc_replacement(Integer m, Integer n, Complex a[], Integer tda,
Complex theta[], NagError *fail)

{
/* nag_zgeqrf */
f08asc(Nag_RowMajor, m, n, a, tda, theta, fail);
/* the factorization in a and theta will be stored differently */

}

void f01rec_replacement(Nag_WhereElements wheret, Integer m, Integer n,
Integer ncolq, Complex a[], Integer tda, const Complex theta[],
NagError *fail)

{
/* nag_zungqr */
/* factorization performed by nag_zgeqrf (f08asc) */
f08atc(Nag_RowMajor, m, ncolq, n, a, tda, theta, fail);

}

f02 – Eigenvalues and Eigenvectors

nag_real_symm_eigenvalues (f02aac)

Scheduled for withdrawal at Mark 26.
Replaced by nag_dsyev (f08fac).

Old: nag_real_symm_eigenvalues(n, a, tda, r, &fail);
New: nag_dsyev(Nag_RowMajor, Nag_EigVals, Nag_Lower, n, a, tda, r, &fail);

Introduction Replacement Calls

Mark 25 replace.13

nag_real_symm_eigensystem (f02abc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_dsyev (f08fac).

Old: nag_real_symm_eigensystem(n, a, tda, r, v, tdv, &fail);
New: nag_dtr_copy (Nag_RowMajor, Nag_Lower, Nag_NoTrans, Nag_NonUnitDiag, n,

a, tda, v, tdv, &fail);
nag_dsyev(Nag_RowMajor, Nag_DoBoth, Nag_Lower, n, v, tdv, r, &fail);

If nag_real_symm_eigensystem (f02abc) was called with the same array supplied for v and a, then the
call to nag_dtr_copy (f16qec) may be omitted.

nag_real_symm_general_eigenvalues (f02adc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_dsygv (f08sac).

Old: nag_real_symm_general_eigenvalues(n, a, tda, b, tdb, r, &fail);
New: nag_dsygv(Nag_RowMajor, 1, Nag_EigVals, Nag_Upper, n, a, tda, b, tdb,

r, &fail);

Note that the call to nag_dsygv (f08sac) will overwrite the upper triangles of the arrays a and b and
leave the subdiagonal elements unchanged, whereas the call to nag_real_symm_general_eigenvalues
(f02adc) overwrites the lower triangle and leaves the elements above the diagonal unchanged.

nag_real_symm_general_eigensystem (f02aec)

Scheduled for withdrawal at Mark 26.
Replaced by nag_dsygv (f08sac).

Old: nag_real_symm_general_eigensystem(n, a, tda, b, tdb, r, v, tdv,
&fail);

New: nag_dtr_copy (Nag_RowMajor, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, n,
a, tda, v, tdv, &fail);

nag_dsygv(Nag_RowMajor, 1, Nag_DoBoth, Nag_Upper, n, v, tdv, b, tdb,
r, &fail);

Note that the call to nag_dsygv (f08sac) will overwrite the upper triangle of the array b and leave the
subdiagonal elements unchanged, whereas the call to nag_real_symm_general_eigensystem (f02aec)
overwrites the lower triangle and leaves the elements above the diagonal unchanged. The call to
nag_dtr_copy (f16qec) copies a to v, so a is left unchanged. If nag_real_symm_general_eigensystem
(f02aec) was called with the same array supplied for v and a, then the call to nag_dtr_copy (f16qec) may
be omitted.

nag_real_eigenvalues (f02afc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_dgeev (f08nac).

Old: nag_real_eigenvalues(n, a, tda, r, iter, &fail);
New: nag_dgeev(Nag_RowMajor, Nag_NotLeftVecs, Nag_NotRightVecs, n, a, tda,

wr, wi,vl, 1, vr, 1, &fail);

where wr and wi are double arrays of lengths n such that wr½i � 1� ¼ r:re½i � 1� and
wi½i � 1� ¼ r:im½i � 1�, for i ¼ 1; 2; . . . ; n; vl and vr are double arrays of length 1 (not used in this
call); the iteration counts (returned by nag_real_eigenvalues (f02afc) in the array iter) are not available
from nag_dgeev (f08nac).

nag_real_eigensystem (f02agc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_dgeev (f08nac).

Old: nag_real_eigensystem(n, a, tda, r, v, tdv, iter, &fail);
New: nag_dgeev(Nag_RowMajor, Nag_NotLeftVecs, Nag_RightVecs, n, a, tda,

wr, wi, vl, 1, vr, pdvr, &fail);

Replacement Calls NAG Library Manual

replace.14 Mark 25

where wr and wi are double arrays of lengths n such that wr½i � 1� ¼ r:re½i � 1� and
wi½i � 1� ¼ r:im½i � 1�, for i ¼ 1; 2; . . . ; n; vl is a double array of length 1 (not used in this call) and
vr is a double array of length n� n; the iteration counts (returned by nag_real_eigensystem (f02agc) in
the array iter) are not available from nag_dgeev (f08nac).

Eigenvector information is stored differently in vr:

v:re½j� ¼ vr½j� if wi½j� ¼ 0:0.

v:re½j� ¼ vr½j� and v:im½j� ¼ vr½jþ 1� and v:re½j þ 1� ¼ vr½j� and v:im½j þ 1� ¼ �vr½jþ 1� if
wi½j� 6¼ 0 and wi½j� ¼ �wi½jþ 1�.

nag_hermitian_eigenvalues (f02awc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_zheev (f08fnc).

Old: nag_hermitian_eigenvalues(n, a, tda, r, &fail);
New: nag_zheev(Nag_RowMajor, Nag_EigVals, Nag_Lower, n, a, tda, r, &fail);

nag_hermitian_eigensystem (f02axc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_zheev (f08fnc).

Old: nag_hermitian_eigensystem(n, a, tda, r, v, tdv, &fail);
New: nag_ztr_copy(Nag_RowMajor, Nag_Lower, Nag_NoTrans, Nag_NonUnitDiag, n,

a, tda, v, tdv, &fail);
nag_zheev(Nag_RowMajor, Nag_DoBoth, Nag_Lower, n, v, tdv, r, &fail);

If nag_hermitian_eigensystem (f02axc) was called with the same arrays supplied for v and a, then the
call to nag_ztr_copy (f16tec) may be omitted.

nag_real_general_eigensystem (f02bjc)

Scheduled for withdrawal at Mark 26.
Replaced by nag_dggev (f08wac).

Old: nag_real_general_eigensystem(n, a, tda, b, tdb, tol, alfa, beta,
wantv, v, tdv, iter, &fail);

New: if (wantv) jobvr = Nag_RightVecs; else jobvr = Nag_NotRightVecs;
nag_dggev(Nag_RowMajor, Nag_NotLeftVecs, jobvr, n, a, tda, b, tdb,

alphar, alphai, beta, vl, tdvl, vr, tdvr, &fail);

where alphar and alphai are double arrays of lengths n such that alphar½i � 1� ¼ alfa:re½i � 1� and
alphai½i � 1� ¼ alfa:im½i � 1�, for i ¼ 1; 2; . . . ; n.

nag_real_svd (f02wec)

Scheduled for withdrawal at Mark 26.
Replaced by nag_dgesvd (f08kbc).

Old: nag_real_svd(m, n, a, tda, ncolb, b, tdb, wantq, q, tdq, sv, wantp,
pt, tdpt, &iter, e, &failinfo, &fail);

New: if (wantq) jobu = Nag_AllU; else jobu = Nag_NotU;
if (wantp) jobvt = Nag_AllVT; else jobvt = Nag_NotVT;
nag_dgesvd(Nag_RowMajor, jobu, jobvt, m, n, a, tda, sv, q, tdq,

pt, tdpt, work, &fail);

work must be a one-dimensional double array of length min m;nð Þ; the iteration count (returned by
nag_real_svd (f02wec) in the argument iter) is not available from nag_dgesvd (f08kbc).

Please note that the facility to return QTB is not provided so arguments ncolb and b are not required.
Instead, nag_dgesvd (f08kbc) has an option to return the entire m �m orthogonal matrix Q, referred to
as u in its documentation, through its 8th argument.

Introduction Replacement Calls

Mark 25 replace.15

nag_complex_svd (f02xec)

Scheduled for withdrawal at Mark 26.
Replaced by nag_zgesvd (f08kpc).

Old: nag_complex_svd(m, n, a, tda, ncolb, b, tdb, wantq, q, tdq, sv, wantp,
ph, tdph, &iter, e, &failinfo, &fail);

New: if (wantq) jobu = Nag_AllU; else jobu = Nag_NotU;
if (wantp) jobvt = Nag_AllVT; else jobvt = Nag_NotVT;
nag_zgesvd(Nag_RowMajor, jobu, jobvt, m, n, a, tda, sv, q, tdq,

ph, tdph, rwork, &fail);

rwork must be a one-dimensional double array of length min m; nð Þ; the iteration count (returned by
nag_complex_svd (f02xec) in the argument iter) is not available from nag_zgesvd (f08kpc).

Please note that the facility to return QHB is not provided so arguments ncolb and b are not required.
Instead, nag_zgesvd (f08kpc) has an option to return the entire m �m unitary matrix Q, referred to as u
in its documentation, through its 8th argument.

f03 – Determinants

nag_real_cholesky (f03aec)

Withdrawn at Mark 25.
Replaced by nag_dpotrf (f07fdc) and nag_det_real_sym (f03bfc).

void f03aec_replacement(Integer n, double a[], Integer tda,
double p[], double *detf, Integer *dete, NagError *fail)

{
/* nag_dpotrf */

f07fdc(Nag_RowMajor, Nag_Upper, n, a, tda, fail);
/* nag_det_real_sym */

f03bfc(Nag_RowMajor, n, a, tda, detf, dete, fail);
/* p is not written to */
/* factorization in a will be different */

}

nag_dpotrf (f07fdc) performs the Cholesky factorization and nag_det_real_sym (f03bfc) calculates the
determinant from the factored form.

Note: subsequent solution of linear systems using the Cholesky factorization performed by nag_dpotrf
(f07fdc) should be performed using nag_dpotrs (f07fec)).

nag_real_lu (f03afc)

Withdrawn at Mark 25.
Replaced by nag_dgetrf (f07adc) and nag_det_real_gen (f03bac).

void f03afc_replacement(Integer n, double a[], Integer tda,
Integer pivot[], double *detf, Integer *dete, NagError *fail)

{
/* nag_dgetrf */
f07adc(Nag_RowMajor, n, n, a, tda, pivot, fail);
/* nag_det_real_gen */
f03bac(Nag_RowMajor, n, a, tda, pivot, detf, dete, fail);
/* the factorization in a will be different */
/* the array pivot will be different */

}

Note: subsequent solution of linear systems using the LU factorization performed by nag_dgetrf (f07adc)
should be performed using nag_dgetrs (f07aec)).

Replacement Calls NAG Library Manual

replace.16 Mark 25

nag_complex_lu (f03ahc)

Withdrawn at Mark 25.
Replaced by nag_zgetrf (f07arc) and nag_det_complex_gen (f03bnc).

void f03ahc_replacement(Integer n, Complex a[], Integer tda,
Integer pivot[], Complex *det, Integer *dete, NagError *fail)

{
Complex d={0,0};
Integer id[2]={0,0};
/* nag_zgetrf */
f07arc(Nag_RowMajor, n, n, a, tda, pivot, fail);
/* nag_det_complex_gen */
f03bnc(Nag_RowMajor, n, a, tda, pivot, &d, id, fail);
/* Bring real and imaginary parts to a common scale */
*dete = MAX(id[0],id[1]);
det->re = ldexp(d.re,id[0]-*dete);
det->im = ldexp(d.im,id[1]-*dete);
/* the factorization in a will be different */

}

nag_zgetrf (f07arc) performs the LU factorization and nag_det_complex_gen (f03bnc) calculates the
determinant from the factored form.

Note: the details of the LU factorization performed by nag_zgetrf (f07arc) differ from those perfomed by
nag_complex_lu (f03ahc); subsequent solution of linear systems using the LU factorization performed
by nag_zgetrf (f07arc) should be performed using nag_zgetrs (f07asc). The determinant returned by
nag_det_complex_gen (f03bnc) independently scales the real and imaginary parts whereas the
determinant returned by nag_complex_lu (f03ahc) used a single scaling factor.

f04 – Simultaneous Linear Equations

The factorization and solution of a positive definite linear system can be handled by calls to functions
from Chapter f07.

nag_complex_lin_eqn_mult_rhs (f04adc)

Withdrawn at Mark 25.
Replaced by nag_complex_gen_lin_solve (f04cac).

void f04adc_replacement(Integer n, Integer nrhs,
Complex a[], Integer tda, const Complex b[], Integer tdb,
Complex x[], Integer tdx, NagError *fail)

{
Integer *ipiv;
double rcond, errbnd;

ipiv = NAG_ALLOC(n, Integer);
/* nag_zge_copy */
f16tfc(Nag_RowMajor, Nag_NoTrans, n, nrhs, b, tdb, x, tdx, fail);
/* nag_complex_gen_lin_solve */
f04cac(Nag_RowMajor, n, nrhs, a, tda, ipiv, x,

tdx, &rcond, &errbnd, fail);
/* The factorization in a will be different */
/* Error codes will be different */
/* Condition number and error bounds are available to you */
NAG_FREE(ipiv);

}

nag_real_cholesky_solve_mult_rhs (f04agc)

Withdrawn at Mark 25.
Replaced by nag_dpotrs (f07fec).

Introduction Replacement Calls

Mark 25 replace.17

It is assumed that the matrix has been factorized by a call to nag_dpotrf (f07fdc) rather than
nag_real_cholesky (f03aec). The array p is no longer required.

void f03aec_replacement(Integer n, double a[], Integer tda,
double p[], double *detf, Integer *dete, NagError *fail)

{
/* nag_dpotrf /*
f07fdc(Nag_RowMajor, Nag_Upper, n, a, tda, fail);
/* nag_det_real_sym */
f03bfc(Nag_RowMajor, n, a, tda, detf, dete, fail);
/* p is not used */
/* the factorization in a will be different */

}

void f04agc_replacement(Integer n, Integer nrhs, double a[],
Integer tda, double p[], const double b[], Integer tdb, double x[],
Integer tdx, NagError *fail)

{
/* nag_dge_copy */
f16qfc(Nag_RowMajor, Nag_NoTrans, n, nrhs, b, tdb, x, tdx, fail);
/* nag_dpotrs */
f07fec(Nag_RowMajor, Nag_Upper, n, nrhs, a, tda, x, tdx, fail);
/* p is not used */

}

nag_real_lu_solve_mult_rhs (f04ajc)

Withdrawn at Mark 25.
Replaced by nag_dgetrs (f07aec).

It is assumed that the matrix has been factorized by a call to nag_dgetrf (f07adc) rather than nag_real_lu
(f03afc).

void f03afc_replacement(Integer n, double a[], Integer tda,
Integer pivot[], double *detf, Integer *dete, NagError *fail)

{
/* nag_dgetrf */
f07adc(Nag_RowMajor, n, n, a, tda, pivot, fail);
/* nag_det_real_gen */
f03bac(Nag_RowMajor, n, a, tda, pivot, detf, dete, fail);
/* the call to f03bac is not needed if you don’t want determinants */

}

void f04ajc_replacement(Integer n, Integer nrhs, const double a[],
Integer tda, const Integer pivot[], double b[], Integer tdb,
NagError *fail)

{
/* nag_dgetrs */
f07aec(Nag_RowMajor, Nag_NoTrans, n, nrhs, a, tda, pivot, b, tdb, fail);

}

Replacement Calls NAG Library Manual

replace.18 Mark 25

nag_complex_lu_solve_mult_rhs (f04akc)

Withdrawn at Mark 25.
Replaced by nag_zgetrs (f07asc).

void f03ahc_replacement(Integer n, Complex a[], Integer tda,
Integer pivot[], Complex *det, Integer *dete, NagError *fail)

{
Complex d={0,0};
Integer id[2]={0,0};
/* nag_zgetrf */
f07arc(Nag_RowMajor, n, n, a, tda, pivot, fail);
/* nag_det_complex_gen */
f03bnc(Nag_RowMajor, n, a, tda, pivot, &d, id, fail);
/* Bring real and imaginary parts to a common scale */
*dete = MAX(id[0],id[1]);
det->re = ldexp(d.re,id[0]-*dete);
det->im = ldexp(d.im,id[1]-*dete);
/* the factorization in a will be different */

}

void f04akc_replacement(Integer n, Integer nrhs, const Complex a[],
Integer tda, const Integer pivot[], Complex b[], Integer tdb,
NagError *fail)

{
/* nag_zgetrs */
f07asc(Nag_RowMajor, Nag_NoTrans, n, nrhs, a, tda, pivot, b, tdb, fail);

}

It is assumed that the matrix has been factorized by a call to nag_zgetrf (f07arc) rather than
nag_complex_lu (f03ahc).

nag_real_lin_eqn (f04arc)

Withdrawn at Mark 25.
Replaced by nag_real_gen_lin_solve (f04bac).

void f04arc_replacement(Integer n, double a[], Integer tda,
const double b[], double x[], NagError *fail)

{
Integer *ipiv;
double rcond, errbnd;

ipiv = NAG_ALLOC(n, Integer);
/* nag_dge_copy */
f16qfc(Nag_RowMajor, Nag_NoTrans, n, 1, b, 1, x, 1, fail);
/* nag_real_gen_lin_solve */
f04bac(Nag_RowMajor, n, 1, a, tda, ipiv, x, 1,

&rcond, &errbnd, fail);
/* The factorization in a will be different */
/* Error codes will be different */
/* Condition number and error bounds are available to you */
NAG_FREE(ipiv);

}

Introduction Replacement Calls

Mark 25 replace.19

nag_hermitian_lin_eqn_mult_rhs (f04awc)

Withdrawn at Mark 25.
Replaced by nag_zpotrs (f07fsc).

void f01bnc_replacement(Integer n, Complex a[], Integer tda,
double p[], NagError *fail)

{
/* nag_zpotrf */
f07frc(Nag_RowMajor, Nag_Lower, n, a, tda, fail);

}

void f04awc_replacement(Integer n, Integer nrhs, const Complex a[],
Integer tda, const double p[], const Complex b[],
Integer tdb, Complex x[], Integer tdx, NagError *fail)

{
/* nag_zge_copy */
f16tfc(Nag_RowMajor, Nag_NoTrans, n, nrhs, b, tdb, x, tdx, fail);
/* nag_zpotrs */
f07fsc(Nag_RowMajor, Nag_Lower, n, nrhs, a, tda, x, tdx, fail);

}

Note that the preceding call to nag_complex_cholesky (f01bnc) has been replaced by nag_zpotrf
(f07frc).

f06 – Linear Algebra Support Functions

The functions in Chapter f16 provide greater functionality than their corresponding functions in Chapter
f06. The essential differences are:

The order argument. This provides the flexibility to operate on matrix data stored in row or column
major order.

The addition of the fail argument to trap data errors. The f06 functions used to abort noisily.

The enumeration types and members use NAG_ as the prefix. This is to guard against accidental use of
non-NAG enums.

Scale factors have been introduced in some functions. For example nag_dtrmv (f16pfc) has an extra
argument, alpha which was not present in the corresponding old_dtrmv (f06pfc) function.

old_dgemv (f06pac)

Withdrawn at Mark 23.
Replaced by nag_dgemv (f16pac).

old_dgbmv (f06pbc)

Withdrawn at Mark 23.
Replaced by nag_dgbmv (f16pbc).

old_dsymv (f06pcc)

Withdrawn at Mark 23.
Replaced by nag_dsymv (f16pcc).

old_dsbmv (f06pdc)

Withdrawn at Mark 23.
Replaced by nag_dsbmv (f16pdc).

old_dspmv (f06pec)

Withdrawn at Mark 23.
Replaced by nag_dspmv (f16pec).

Replacement Calls NAG Library Manual

replace.20 Mark 25

old_dtrmv (f06pfc)

Withdrawn at Mark 23.
Replaced by nag_dtrmv (f16pfc).

old_dtbmv (f06pgc)

Withdrawn at Mark 23.
Replaced by nag_dtbmv (f16pgc).

old_dtpmv (f06phc)

Withdrawn at Mark 23.
Replaced by nag_dtpmv (f16phc).

old_dtrsv (f06pjc)

Withdrawn at Mark 23.
Replaced by nag_dtrsv (f16pjc).

old_dtbsv (f06pkc)

Withdrawn at Mark 23.
Replaced by nag_dtbsv (f16pkc).

old_dtpsv (f06plc)

Withdrawn at Mark 23.
Replaced by nag_dtpsv (f16plc).

old_dger (f06pmc)

Withdrawn at Mark 23.
Replaced by nag_dger (f16pmc).

old_dsyr (f06ppc)

Withdrawn at Mark 23.
Replaced by nag_dsyr (f16ppc).

old_dspr (f06pqc)

Withdrawn at Mark 23.
Replaced by nag_dspr (f16pqc).

old_dsyr2 (f06prc)

Withdrawn at Mark 23.
Replaced by nag_dsyr2 (f16prc).

old_dspr2 (f06psc)

Withdrawn at Mark 23.
Replaced by nag_dspr2 (f16psc).

old_zgemv (f06sac)

Withdrawn at Mark 23.
Replaced by nag_zgemv (f16sac).

Introduction Replacement Calls

Mark 25 replace.21

old_zgbmv (f06sbc)

Withdrawn at Mark 23.
Replaced by nag_zgbmv (f16sbc).

old_zhemv (f06scc)

Withdrawn at Mark 23.
Replaced by nag_zhemv (f16scc).

old_zhbmv (f06sdc)

Withdrawn at Mark 23.
Replaced by nag_zhbmv (f16sdc).

old_zhpmv (f06sec)

Withdrawn at Mark 23.
Replaced by nag_zhpmv (f16sec).

old_ztrmv (f06sfc)

Withdrawn at Mark 23.
Replaced by nag_ztrmv (f16sfc).

old_ztbmv (f06sgc)

Withdrawn at Mark 23.
Replaced by nag_ztbmv (f16sgc).

old_ztpmv (f06shc)

Withdrawn at Mark 23.
Replaced by nag_ztpmv (f16shc).

old_ztrsv (f06sjc)

Withdrawn at Mark 23.
Replaced by nag_ztrsv (f16sjc).

old_ztbsv (f06skc)

Withdrawn at Mark 23.
Replaced by nag_ztbsv (f16skc).

old_ztpsv (f06slc)

Withdrawn at Mark 23.
Replaced by nag_ztpsv (f16slc).

old_zgeru (f06smc)

Withdrawn at Mark 23.
Replaced by nag_zger (f16smc).

old_zgerc (f06snc)

Withdrawn at Mark 23.
Replaced by nag_zger (f16smc).

Replacement Calls NAG Library Manual

replace.22 Mark 25

old_zher (f06spc)

Withdrawn at Mark 23.
Replaced by nag_zher (f16spc).

old_zhpr (f06sqc)

Withdrawn at Mark 23.
Replaced by nag_zhpr (f16sqc).

old_zher2 (f06src)

Withdrawn at Mark 23.
Replaced by nag_zher2 (f16src).

old_zhpr2 (f06ssc)

Withdrawn at Mark 23.
Replaced by nag_zhpr2 (f16ssc).

old_dgemm (f06yac)

Withdrawn at Mark 23.
Replaced by nag_dgemm (f16yac).

old_dsymm (f06ycc)

Withdrawn at Mark 23.
Replaced by nag_dsymm (f16ycc).

old_dtrmm (f06yfc)

Withdrawn at Mark 23.
Replaced by nag_dtrmm (f16yfc).

old_dtrsm (f06yjc)

Withdrawn at Mark 23.
Replaced by nag_dtrsm (f16yjc).

old_dsyrk (f06ypc)

Withdrawn at Mark 23.
Replaced by nag_dsyrk (f16ypc).

old_dsyr2k (f06yrc)

Withdrawn at Mark 23.
Replaced by nag_dsyr2k (f16yrc).

old_zgemm (f06zac)

Withdrawn at Mark 23.
Replaced by nag_zgemm (f16zac).

old_zhemm (f06zcc)

Withdrawn at Mark 23.
Replaced by nag_zhemm (f16zcc).

Introduction Replacement Calls

Mark 25 replace.23

old_ztrmm (f06zfc)

Withdrawn at Mark 23.
Replaced by nag_ztrmm (f16zfc).

old_ztrsm (f06zjc)

Withdrawn at Mark 23.
Replaced by nag_ztrsm (f16zjc).

old_zherk (f06zpc)

Withdrawn at Mark 23.
Replaced by nag_zherk (f16zpc).

old_zher2k (f06zrc)

Withdrawn at Mark 23.
Replaced by nag_zher2k (f16zrc).

old_zsymm (f06ztc)

Withdrawn at Mark 23.
Replaced by nag_zsymm (f16ztc).

old_zsyrk (f06zuc)

Withdrawn at Mark 23.
Replaced by nag_zsyrk (f16zuc).

old_zsyr2k (f06zwc)

Withdrawn at Mark 23.
Replaced by nag_zsyr2k (f16zwc).

g01 – Simple Calculations on Statistical Data

nag_summary_stats_1var (g01aac)

Scheduled for withdrawal at Mark 26.
Replaced by nag_summary_stats_onevar (g01atc).

Old:
/* nag_summary_stats_1var (g01aac) */
nag_summary_stats_1var(n, x, wt, &nvalid, &xmean, &xsd, &xskew,

&xkurt,&xmin, &xmax, &wsum, &fail);
New:

/* nag_summary_stats_onevar (g01atc) */
pn = 0;
nag_summary_stats_onevar(n, x, wt, &pn, &xmean, &xsd, &xskew, &xkurt,

&xmin, &xmax, rcomm, &fail);
nvalid = pn;
wtsum = rcomm[0];

nag_deviates_normal_dist (g01cec)

Withdrawn at Mark 24.
Replaced by nag_deviates_normal (g01fac).

Old: x = nag_deviates_normal_dist(p, &fail);
New: x = nag_deviates_normal(Nag_LowerTail, p, &fail);

Replacement Calls NAG Library Manual

replace.24 Mark 25

g02 – Correlation and Regression Analysis

nag_full_step_regsn_monit (g02ewc)

Withdrawn at Mark 25.
Replaced by nag_full_step_regsn_monfun (g02efh) (see monfun in nag_full_step_regsn (g02efc)).

Old: nag_full_step_regsn_monit(flag, var, val, &fail)
New: nag_full_step_regsn_monfun(flag, var, val, &fail)

Note: it is unlikely that you will need to call this function directly. Rather it will be supplied as a
function argument to nag_full_step_regsn (g02efc) when monitoring information is required.

g05 – Random Number Generators

nag_random_continuous_uniform (g05cac)

Withdrawn at Mark 24.
Replaced by nag_rand_basic (g05sac).

Old:
/* nag_random_continuous_uniform (g05cac) */
for (i = 0; i < n; i++)

x[i] = nag_random_continuous_uniform();
New:

/* nag_rand_basic (g05sac) */
nag_rand_basic(n,state,x,&fail);

The Integer array state in the call to nag_rand_basic (g05sac) contains information on the base generator
being used. This array must have been initialized prior to calling nag_rand_basic (g05sac) with a call to
either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The required length
of the array state will depend on the base generator chosen during initialization. Due to changes in the
underlying code the sequence of values produced by nag_rand_basic (g05sac) is likely to be different
from those produced by nag_random_continuous_uniform (g05cac).

nag_random_init_repeatable (g05cbc)

Withdrawn at Mark 24.
Replaced by nag_rand_init_repeatable (g05kfc).

Old:
/* nag_random_init_repeatable (g05cbc) */
nag_random_init_repeatable(i);

New:
lseed = 1;
seed[0] = i;
genid = Nag_Basic;
subid = 1;

/* nag_rand_init_repeatable (g05kfc) */
nag_rand_init_repeatable(genid,subid,seed,lseed,state,&lstate,&fail);

The Integer array state in the call to nag_rand_init_repeatable (g05kfc) contains information on the base
generator being used. The base generator is chosen via the integer arguments genid and subid. The
required length of the array state depends on the base generator chosen. Due to changes in the
underlying code a sequence of values produced by using a random number generator initialized via a call
to nag_rand_init_repeatable (g05kfc) is likely to be different from a sequence produced by a generator
initialized by nag_random_init_repeatable (g05cbc), even if the same value for i is used.

Note: it may still be necessary to call nag_random_init_repeatable (g05cbc) rather than the replacement
function nag_rand_init_repeatable (g05kfc) when using nag_multid_quad_monte_carlo_1 (d01xbc). See
Section 10 in nag_multid_quad_monte_carlo_1 (d01xbc) for additional information.

Introduction Replacement Calls

Mark 25 replace.25

nag_random_init_nonrepeatable (g05ccc)

Withdrawn at Mark 24.
Replaced by nag_rand_init_nonrepeatable (g05kgc).

Old:
/* nag_random_init_nonrepeatable (g05ccc) */
nag_random_init_nonrepeatable();

New:
genid = Nag_Basic;
subid = 1;

/* nag_rand_init_nonrepeatable (g05kgc) */
nag_rand_init_nonrepeatable(genid,subid,state,&lstate,&fail);

The Integer array state in the call to nag_rand_init_nonrepeatable (g05kgc) contains information on the
base generator being used. The base generator is chosen via the integer arguments genid and subid. The
required length of the array state depends on the base generator chosen.

Note: it may still be necessary to call nag_random_init_nonrepeatable (g05ccc) rather than the
r e p l a c e m e n t f u n c t i o n n a g _ r a n d _ i n i t _ n o n r e p e a t a b l e (g 0 5 k g c) w h e n u s i n g
nag_multid_quad_monte_carlo_1 (d01xbc). See Section 10 in nag_multid_quad_monte_carlo_1
(d01xbc) for additional information.

nag_save_random_state (g05cfc)

Withdrawn at Mark 24.
There is no replacement for this function.

Old:
/* nag_save_random_state (g05cfc) */
nag_save_random_state(istate,xstate);

New:
for (i = 0; i < lstate; i++)

istate[i] = state[i];

The state of the base generator for the group of functions nag_rand_init_repeatable (g05kfc),
nag_rand_init_nonrepeatable (g05kgc), nag_rand_leap_frog (g05khc), nag_rand_skip_ahead (g05kjc),
nag_rand_permute (g05ncc), nag_rand_sample (g05ndc), nag_rand_agarchI (g05pdc) –
nag_rand_2_way_table (g05pzc), nag_rand_copula_students_t (g05rcc)–nag_rand_matrix_multi_normal
(g05rzc), g05s and g05t can be saved by simply creating a local copy of the array state. The first element
of the state array contains the number of elements that are used by the random number generating
functions, therefore either this number of elements can be copied, or the whole array (as defined in the
calling program).

nag_restore_random_state (g05cgc)

Withdrawn at Mark 24.
There is no replacement for this function.

Old:
/* nag_restore_random_state (g05cgc) */
nag_restore_random_state(istate,xstate,&fail);

New:
for (i = 0; i < lstate; i++)

state[i] = istate[i];

The state of the base generator for the group of functions nag_rand_init_repeatable (g05kfc),
nag_rand_init_nonrepeatable (g05kgc), nag_rand_leap_frog (g05khc), nag_rand_skip_ahead (g05kjc),
nag_rand_permute (g05ncc), nag_rand_sample (g05ndc), nag_rand_agarchI (g05pdc) –
nag_rand_2_way_table (g05pzc), nag_rand_copula_students_t (g05rcc)–nag_rand_matrix_multi_normal
(g05rzc), g05s and g05t can be restored by simply copying back the previously saved copy of the state
array. The first element of the state array contains the number of elements that are used by the random
number generating functions, therefore either this number of elements can be copied, or the whole array
(as defined in the calling program).

Replacement Calls NAG Library Manual

replace.26 Mark 25

nag_random_continuous_uniform_ab (g05dac)

Withdrawn at Mark 24.
Replaced by nag_rand_uniform (g05sqc).

Old:
for (i = 0; i < n; i++)

/* nag_random_continuous_uniform_ab (g05dac) */
x[i] = nag_random_continuous_uniform_ab(aa,bb);

New:
a = (aa < bb) ? aa : bb;
b = (aa < bb) ? bb : aa;

/* nag_rand_uniform (g05sqc) */
nag_rand_uniform(n,a,b,state,x,&fail);

The old function nag_random_continuous_uniform_ab (g05dac) returns a single variate at a time,
whereas the new function nag_rand_uniform (g05sqc) returns a vector of n values in one go. In
nag_rand_uniform (g05sqc) the minimum value must be held in the argument a and the maximum in
argument b, therefore a < b. This was not the case for the equivalent arguments in nag_random_conti-
nuous_uniform_ab (g05dac).

The Integer array state in the call to nag_rand_uniform (g05sqc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_uniform (g05sqc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization. Due to
changes in the underlying code the sequence of values produced by nag_rand_uniform (g05sqc) is likely
to be different from those produced by nag_random_continuous_uniform_ab (g05dac).

nag_random_exp (g05dbc)

Withdrawn at Mark 24.
Replaced by nag_rand_exp (g05sfc).

Old:
for (i = 0; i < n; i++)

/* nag_random_exp (g05dbc) */
x[i] = nag_random_exp(aa);

New:
a = fabs(aa);

/* nag_rand_exp (g05sfc) */
nag_rand_exp(n,a,state,x,&fail);

The old function nag_random_exp (g05dbc) returns a single variate at a time, whereas the new function
nag_rand_exp (g05sfc) returns a vector of n values in one go. In nag_rand_exp (g05sfc) argument a
must be non-negative, this was not the case for the equivalent argument in nag_random_exp (g05dbc).

The Integer array state in the call to nag_rand_exp (g05sfc) contains information on the base generator
being used. This array must have been initialized prior to calling nag_rand_exp (g05sfc) with a call to
either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The required length
of the array state will depend on the base generator chosen during initialization. Due to changes in the
underlying code the sequence of values produced by nag_rand_exp (g05sfc) is likely to be different from
those produced by nag_random_exp (g05dbc).

nag_random_normal (g05ddc)

Withdrawn at Mark 24.
Replaced by nag_rand_normal (g05skc).

Old:
for (i = 0; i < n; i++)

/* nag_random_normal (g05ddc) */
x[i] = nag_random_normal(xmu,sd);

New:
/* nag_rand_normal (g05skc) */
nag_rand_normal(n,xmu,var,state,x,&fail);

Introduction Replacement Calls

Mark 25 replace.27

The old function nag_random_normal (g05ddc) returns a single variate at a time, whereas the new
function nag_rand_normal (g05skc) returns a vector of n values in one go. nag_rand_normal (g05skc)
expects the variance of the Normal distribution (argument var), compared to nag_random_normal
(g05ddc) which expected the standard deviation.

The Integer array state in the call to nag_rand_normal (g05skc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_normal (g05skc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization. Due to
changes in the underlying code the sequence of values produced by nag_rand_normal (g05skc) is likely
to be different from those produced by nag_random_normal (g05ddc).

nag_random_discrete_uniform (g05dyc)

Withdrawn at Mark 24.
Replaced by nag_rand_discrete_uniform (g05tlc).

Old:
for (i = 0; i < n; i++)

/* nag_random_discrete_uniform (g05dyc) */
x[i] = nag_random_discrete_uniform(aa,bb);

New:
a = (aa < bb) ? aa : bb;
b = (aa < bb) ? bb : aa;
/* nag_rand_discrete_uniform (g05tlc) */
nag_rand_discrete_uniform(n,a,b,state,x,&fail);

The old function nag_random_discrete_uniform (g05dyc) returns a single variate at a time, whereas the
new function nag_rand_discrete_uniform (g05tlc) returns a vector of n values in one go. In
nag_rand_discrete_uniform (g05tlc) the minimum value must be held in the argument a and the
maximum in argument b, therefore a � b. This was not the case for the equivalent arguments in
nag_random_discrete_uniform (g05dyc).

The Integer array state in the call to nag_rand_discrete_uniform (g05tlc) contains information on the
base generator being used. This array must have been initialized prior to calling
nag_rand_discrete_uniform (g05tlc) with a call to either nag_rand_init_repeatable (g05kfc) or
nag_rand_init_nonrepeatable (g05kgc). The required length of the array state will depend on the base
generator chosen during initialization. Due to changes in the underlying code the sequence of values
produced by nag_rand_discrete_uniform (g05tlc) is likely to be different from those produced by
nag_random_discrete_uniform (g05dyc).

nag_ref_vec_multi_normal (g05eac)

Withdrawn at Mark 24.
Replaced by nag_rand_matrix_multi_normal (g05rzc).

Old:
/* nag_ref_vec_multi_normal (g05eac) */
nag_ref_vec_multi_normal(a,m,c,tdc,eps,&r,&fail);

New:
order = Nag_RowMajor;
mode = Nag_InitializeReference;
lr = m * (m + 1) + 1;
r = NAG_ALLOC(lr,double);

/* nag_rand_matrix_multi_normal (g05rzc) */
nag_rand_matrix_multi_normal(order,mode,n,m,a,c,tdc,r,lr,

state,x,pdx,&fail);

The old function nag_ref_vec_multi_normal (g05eac) sets up a reference vector for use by
nag_return_multi_normal (g05ezc). The functionality of both these functions has been combined into
t h e s i n g l e n e w f u n c t i o n n a g _ r a n d _ m a t r i x _ m u l t i _ n o r m a l (g 0 5 r z c) . S e t t i n g
mode ¼ Nag InitializeReference in the call to nag_rand_matrix_multi_normal (g05rzc) only sets up
the double reference vector r and hence mimics the functionality of nag_ref_vec_multi_normal (g05eac).

Replacement Calls NAG Library Manual

replace.28 Mark 25

The length of the double reference vector, r, in nag_rand_matrix_multi_normal (g05rzc) must be at least
m� mþ 1ð Þ þ 1. In contrast to the equivalent argument in nag_ref_vec_multi_normal (g05eac), this
array must be allocated in the calling program.

nag_ref_vec_poisson (g05ecc)

Withdrawn at Mark 24.
Replaced by nag_rand_poisson (g05tjc).

Old:
/* nag_ref_vec_poisson (g05ecc) */
nag_ref_vec_poisson(t,&r,&fail);
for (i = 0; i < n; i++)

/* nag_return_discrete (g05eyc) */
x[i] = nag_return_discrete(r);

New:
mode = Nag_InitializeAndGenerate;
lr = 30 + (Integer) (20 * sqrt(t) + t);
r = NAG_ALLOC(lr,double);

/* nag_rand_poisson (g05tjc) */
nag_rand_poisson(mode,n,t,r,lr,state,x,&fail);

The old function nag_ref_vec_poisson (g05ecc) sets up a reference vector for use by nag_return_discrete
(g05eyc). The replacement function nag_rand_poisson (g05tjc) is now used to both set up a reference
vector and generate the required variates. Setting mode ¼ Nag InitializeReference in the call to
nag_rand_poisson (g05tjc) sets up the double reference vector r and hence mimics the functionality of
nag_ref_vec_poisson (g05ecc). Setting mode ¼ Nag GenerateFromReference generates a series of
variates from a reference vector mimicking the functionality of nag_return_discrete (g05eyc) for this
particular distribution. Setting mode ¼ Nag InitializeAndGenerate initializes the reference vector and
generates the variates in one go.

The function nag_return_discrete (g05eyc) returns a single variate at a time, whereas the new function
nag_rand_poisson (g05tjc) returns a vector of n values in one go.

The length of the double reference vector, r, in nag_rand_poisson (g05tjc), must be allocated in the
calling program in contrast to the equivalent argument in nag_ref_vec_poisson (g05ecc), see the
documentation for more details.

The Integer array state in the call to nag_rand_poisson (g05tjc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_poisson (g05tjc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization. Due to
changes in the underlying code the sequence of values produced by nag_rand_poisson (g05tjc) is likely
to be different from those produced by a combination of nag_ref_vec_poisson (g05ecc) and
nag_return_discrete (g05eyc).

nag_ref_vec_binomial (g05edc)

Withdrawn at Mark 24.
Replaced by nag_rand_binomial (g05tac).

Old:
/* nag_ref_vec_binomial (g05edc) */
nag_ref_vec_binomial(m,p,&r,&fail);
for (i = 0; i < n; i++)

/* nag_return_discrete (g05eyc) */
x[i] = nag_return_discrete(r);

New:
mode = Nag_InitializeAndGenerate;
lr = 22 + 20 * ((Integer) sqrt(m * p * (1 - p)));
r = NAG_ALLOC(lr,double);

/* nag_rand_binomial (g05tac) */
nag_rand_binomial(mode,n,m,p,r,lr,state,x,&fail);

Introduction Replacement Calls

Mark 25 replace.29

The old function nag_ref_vec_binomial (g05edc) sets up a reference vector for use by nag_return_dis-
crete (g05eyc). The replacement function nag_rand_binomial (g05tac) is now used to both set up a
reference vector and generate the required variates. Setting mode ¼ Nag InitializeReference in the call to
nag_rand_binomial (g05tac) sets up the double reference vector r and hence mimics the functionality of
nag_ref_vec_binomial (g05edc). Setting mode ¼ Nag GenerateFromReference generates a series of
variates from a reference vector mimicking the functionality of nag_return_discrete (g05eyc) for this
particular distribution. Setting mode ¼ Nag InitializeAndGenerate initializes the reference vector and
generates the variates in one go.

The function nag_return_discrete (g05eyc) returns a single variate at a time, whereas the new function
nag_rand_binomial (g05tac) returns a vector of n values in one go.

The length of the double reference vector, r, in nag_rand_binomial (g05tac), needs to be a different
length from the equivalent argument in nag_ref_vec_binomial (g05edc), see the documentation for more
details.

The Integer array state in the call to nag_rand_binomial (g05tac) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_binomial (g05tac)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization. Due to
changes in the underlying code the sequence of values produced by nag_rand_binomial (g05tac) is likely
to be different from those produced by a combination of nag_ref_vec_binomial (g05edc) and
nag_return_discrete (g05eyc).

nag_ran_permut_vec (g05ehc)

Withdrawn at Mark 24.
Replaced by nag_rand_permute (g05ncc).

Old:
/* nag_ran_permut_vec (g05ehc) */
nag_ran_permut_vec(index,n,&fail);

New:
/* nag_rand_permute (g05ncc) */
nag_rand_permute(index,n,state,&fail);

The Integer array state in the call to nag_rand_permute (g05ncc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_permute (g05ncc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization. Due to
changes in the underlying code the sequence of values produced by nag_rand_permute (g05ncc) is likely
to be different from those produced by nag_ran_permut_vec (g05ehc).

nag_ran_sample_vec (g05ejc)

Withdrawn at Mark 24.
Replaced by nag_rand_sample (g05ndc).

Old:
/* nag_ran_sample_vec (g05ejc) */
nag_ran_sample_vec(ia,n,iz,m,&fail);

New:
/* nag_rand_sample (g05ndc) */
nag_rand_sample(ia,n,iz,m,state,&fail);

The Integer array state in the call to nag_rand_sample (g05ndc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_sample (g05ndc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization. Due to
changes in the underlying code the sequence of values produced by nag_rand_sample (g05ndc) is likely
to be different from those produced by nag_ran_sample_vec (g05ejc).

Replacement Calls NAG Library Manual

replace.30 Mark 25

nag_ref_vec_discrete_pdf_cdf (g05exc)

Withdrawn at Mark 24.
Replaced by nag_rand_gen_discrete (g05tdc).

Old:
/* nag_ref_vec_discrete_pdf_cdf (g05exc) */
nag_ref_vec_discrete_pdf_cdf(p,np,sizep,distf,&r,&fail);
for (i = 0; i < n; i++)

/* nag_return_discrete (g05eyc) */
x[i] = nag_return_discrete(r);

New:
mode = Nag_InitializeAndGenerate;
lr = 10 + (Integer) (1.4 * np);
r = NAG_ALLOC(lr,double);

/* nag_rand_gen_discrete (g05tdc) */
nag_rand_gen_discrete(mode,n,p,np,sizep,distf,r,lr,state,x,&fail);

The old function nag_ref_vec_discrete_pdf_cdf (g05exc) sets up a reference vector for use by
nag_return_discrete (g05eyc). The replacement function nag_rand_gen_discrete (g05tdc) is now used to
b o t h s e t u p a r e f e r e n c e v e c t o r a n d g e n e r a t e t h e r e q u i r e d v a r i a t e s . S e t t i n g
mode ¼ Nag InitializeReference in the call to nag_rand_gen_discrete (g05tdc) sets up the double
reference vector r and hence mimics the functionality of nag_ref_vec_discrete_pdf_cdf (g05exc). Setting
mode ¼ Nag GenerateFromReference generates a series of variates from a reference vector mimicking
the functionality of nag_return_discrete (g05eyc) for this particular distribution. Setting
mode ¼ Nag InitializeAndGenerate initializes the reference vector and generates the variates in one go.

The function nag_return_discrete (g05eyc) returns a single variate at a time, whereas the new function
nag_rand_gen_discrete (g05tdc) returns a vector of n values in one go.

The length of the double reference vector, r, in nag_rand_gen_discrete (g05tdc) must be allocated in the
calling program in contrast to the equivalent argument in nag_ref_vec_discrete_pdf_cdf (g05exc), see the
documentation for more details.

The Integer array state in the call to nag_rand_gen_discrete (g05tdc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_gen_discrete
(g05tdc) with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable
(g05kgc). The required length of the array state will depend on the base generator chosen during
initialization. Due to changes in the underlying code the sequence of values produced by
nag_rand_gen_discrete (g05tdc) is likely to be different from those produced by a combination of
nag_ref_vec_discrete_pdf_cdf (g05exc) and nag_return_discrete (g05eyc).

nag_return_discrete (g05eyc)

Withdrawn at Mark 24.
Replaced by nag_rand_gen_discrete (g05tdc).

There is no direct replacement function for nag_return_discrete (g05eyc).

nag_return_discrete (g05eyc) is designed to generate random draws from a distribution defined by a
reference vector. These reference vectors are created by other functions in Chapter g05, for example
nag_ref_vec_poisson (g05ecc), which have themselves been superseded. In order to replace a call to
nag_return_discrete (g05eyc) you must identify which NAG function generated the reference vector
being used and look up its replacement. For example, to replace a call to nag_return_discrete (g05eyc)
preceded by a call to nag_ref_vec_discrete_pdf_cdf (g05exc), as in:

/* nag_ref_vec_discrete_pdf_cdf (g05exc) */
nag_ref_vec_discrete_pdf_cdf(p,np,sizep,distf,&r,&fail);
/* nag_return_discrete (g05eyc) */
x = nag_return_discrete(r);

you would need to look at the replacement function for nag_ref_vec_discrete_pdf_cdf (g05exc).

Introduction Replacement Calls

Mark 25 replace.31

nag_return_multi_normal (g05ezc)

Withdrawn at Mark 24.
Replaced by nag_rand_matrix_multi_normal (g05rzc).

Old:
#define X(I,J) x[(I*pdx + J)]
/* nag_ref_vec_multi_normal (g05eac) */
nag_ref_vec_multi_normal(a,m,c,tdc,eps,&r,&fail);
for (i = 0; i < n; i++) {

/* nag_return_multi_normal (g05ezc) */
nag_return_multi_normal(z,r);
for (j = 0; j < m; j++)

X(i,j) = z[j];
}

New:
order = Nag_RowMajor;
mode = Nag_InitializeAndGenerate;
lr = m * (m + 1) + 1; r = NAG_ALLOC(lr,double);
/* nag_rand_matrix_multi_normal (g05rzc) */
nag_rand_matrix_multi_normal(order,mode,n,m,a,c,tdc,r,lr,

state,x,pdx,&fail);

The old function nag_ref_vec_multi_normal (g05eac) sets up a reference vector for use by
nag_return_multi_normal (g05ezc). The functionality of both these functions has been combined into
t h e s i n g l e n e w f u n c t i o n n a g _ r a n d _ m a t r i x _ m u l t i _ n o r m a l (g 0 5 r z c) . S e t t i n g
mode ¼ Nag InitializeAndGenerate in the call to nag_rand_matrix_multi_normal (g05rzc) sets up the
double reference vector r and generates the draws from the multivariate Normal distribution in one go.

The old function nag_return_multi_normal (g05ezc) returns a single (m-dimensional vector) draw from
the multivariate Normal distribution at a time, whereas the new function nag_rand_matrix_multi_normal
(g05rzc) returns an n by m matrix of n draws in one go.

The Integer array state in the call to nag_rand_matrix_multi_normal (g05rzc) contains information on
the base generator being used. This array must have been initialized prior to calling
nag_rand_matrix_multi_normal (g05rzc) with a call to either nag_rand_init_repeatable (g05kfc) or
nag_rand_init_nonrepeatable (g05kgc). The required length of the array state will depend on the base
generator chosen during initialization. Due to changes in the underlying code the sequence of values
produced by nag_rand_matrix_multi_normal (g05rzc) is likely to be different from those produced by
nag_return_multi_normal (g05ezc).

nag_random_beta (g05fec)

Withdrawn at Mark 24.
Replaced by nag_rand_beta (g05sbc).

Old:
/* nag_random_beta (g05fec) */

nag_random_beta(a,b,n,x,&fail);
New:

/* nag_rand_beta (g05sbc) */
nag_rand_beta(n,a,b,state,x,&fail);

The Integer array state in the call to nag_rand_beta (g05sbc) contains information on the base generator
being used. This array must have been initialized prior to calling nag_rand_beta (g05sbc) with a call to
either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The required length
of the array state will depend on the base generator chosen during initialization. Due to changes in the
underlying code the sequence of values produced by nag_rand_beta (g05sbc) is likely to be different
from those produced by nag_random_beta (g05fec).

Replacement Calls NAG Library Manual

replace.32 Mark 25

nag_random_gamma (g05ffc)

Withdrawn at Mark 24.
Replaced by nag_rand_gamma (g05sjc).

Old:
/* nag_random_gamma (g05ffc) */
nag_random_gamma(a,b,n,x,&fail);

New:
/* nag_rand_gamma (g05sjc) */
nag_rand_gamma(n,a,b,state,x,&fail);

The Integer array state in the call to nag_rand_gamma (g05sjc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_gamma (g05sjc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization. Due to
changes in the underlying code the sequence of values produced by nag_rand_gamma (g05sjc) is likely
to be different from those produced by nag_random_gamma (g05ffc).

nag_arma_time_series (g05hac)

Withdrawn at Mark 24.
Replaced by nag_rand_arma (g05phc).

Old:
/* nag_arma_time_series (g05hac) */
nag_arma_time_series(start,p,q,phi,theta,mean,vara,n,w,ref,&fail);

New:
mode = (start == Nag_TRUE) ? Nag_InitializeAndGenerate :

Nag_GenerateFromReference;
lr = (p > q + 1) ? p : q + 1;
lr += p + q + 6;
r = NAG_ALLOC(lr,double);

/* nag_rand_arma (g05phc) */
nag_rand_arma(mode,n,mean,p,phi,q,theta,vara,r,lr,state,&var,x,&fail);

The Integer array state in the call to nag_rand_arma (g05phc) contains information on the base generator
being used. This array must have been initialized prior to calling nag_rand_arma (g05phc) with a call to
either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The required length
of the array state will depend on the base generator chosen during initialization. Due to changes in the
underlying code the sequence of values produced by nag_rand_arma (g05phc) is likely to be different
from those produced by nag_arma_time_series (g05hac).

nag_generate_agarchI (g05hkc)

Withdrawn at Mark 24.
Replaced by nag_rand_agarchI (g05pdc).

Old:
/* nag_generate_agarchI (g05hkc) */
nag_generate_agarchI(num,p,q,theta,gamma,ht,et,fcall,rvec,&fail);

New:
dist = Nag_NormalDistn;
df = 0;
bfcall = (fcall == Nag_Garch_Fcall_True) ? Nag_TRUE : Nag_FALSE;
lr = 2 * (p + q + 2);
r = NAG_ALLOC(lr,double);

/* nag_rand_agarchI (g05pdc) */
nag_rand_agarchI(dist,num,p,q,theta,gamma,df,ht,et,bfcall,r,lr,

state,&fail);

The Integer array state in the call to nag_rand_agarchI (g05pdc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_agarchI (g05pdc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization. Due to

Introduction Replacement Calls

Mark 25 replace.33

changes in the underlying code the sequence of values produced by nag_rand_agarchI (g05pdc) is likely
to be different from those produced by nag_generate_agarchI (g05hkc).

nag_generate_agarchII (g05hlc)

Withdrawn at Mark 24.
Replaced by nag_rand_agarchII (g05pec).

Old:
/* nag_generate_agarchII (g05hlc) */
nag_generate_agarchII(num,p,q,theta,gamma,ht,et,fcall,rvec,&fail);

New:
dist = Nag_NormalDistn;
df = 0;
bfcall = (fcall == Nag_Garch_Fcall_True) ? Nag_TRUE : Nag_FALSE;
lr = 2 * (p + q + 2);
r = NAG_ALLOC(lr,double);

/* nag_rand_agarchII (g05pec) */
nag_rand_agarchII(dist,num,p,q,theta,gamma,df,ht,et,bfcall,r,lr,

state,&fail);

The Integer array state in the call to nag_rand_agarchII (g05pec) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_agarchII (g05pec)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization. Due to
changes in the underlying code the sequence of values produced by nag_rand_agarchII (g05pec) is likely
to be different from those produced by nag_generate_agarchII (g05hlc).

nag_generate_garchGJR (g05hmc)

Withdrawn at Mark 24.
Replaced by nag_rand_garchGJR (g05pfc).

Old:
/* nag_generate_garchGJR (g05hmc) */
nag_generate_garchGJR(num,p,q,theta,gamma,ht,et,fcall,rvec,&fail);

New:
dist = Nag_NormalDistn;
df = 0;
bfcall = (fcall == Nag_Garch_Fcall_True) ? Nag_TRUE : Nag_FALSE;
lr = 2 * (p + q + 2);
r = NAG_ALLOC(lr,double);

/* nag_rand_garchGJR (g05pfc) */
nag_rand_garchGJR(dist,num,p,q,theta,gamma,df,ht,et,bfcall,r,lr,

state,&fail);

The Integer array state in the call to nag_rand_garchGJR (g05pfc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_garchGJR (g05pfc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization. Due to
changes in the underlying code the sequence of values produced by nag_rand_garchGJR (g05pfc) is
likely to be different from those produced by nag_generate_garchGJR (g05hmc).

nag_rngs_basic (g05kac)

Withdrawn at Mark 24.
Replaced by nag_rand_basic (g05sac).

Old:
for (i = 0; i < n; i++)

/* nag_rngs_basic (g05kac) */
x[i] = nag_rngs_basic(igen,iseed);

New:
/* nag_rand_basic (g05sac) */
nag_rand_basic(n,state,x,&fail);

Replacement Calls NAG Library Manual

replace.34 Mark 25

The old function nag_rngs_basic (g05kac) returns a single variate at a time, whereas the new function
nag_rand_basic (g05sac) returns a vector of n values in one go.

The Integer array state in the call to nag_rand_basic (g05sac) contains information on the base generator
being used. This array must have been initialized prior to calling nag_rand_basic (g05sac) with a call to
either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The required length
of the array state will depend on the base generator chosen during initialization.

nag_rngs_init_repeatable (g05kbc)

Withdrawn at Mark 24.
Replaced by nag_rand_init_repeatable (g05kfc).

Old:
/* nag_rngs_init_repeatable (g05kbc) */
nag_rngs_init_repeatable(&igen,iseed);

New:
if (igen == 0) {

genid = Nag_Basic;
subid = 1;

} else if (igen >= 1) {
genid = Nag_WichmannHill_I;
subid = igen;

}

/* nag_rand_init_repeatable (g05kfc) */
nag_rand_init_repeatable(genid,subid,iseed,lseed,state,&lstate,&fail);

nag_rngs_init_nonrepeatable (g05kcc)

Withdrawn at Mark 24.
Replaced by nag_rand_init_nonrepeatable (g05kgc).

Old:
/* nag_rngs_init_nonrepeatable (g05kcc) */
nag_rngs_init_nonrepeatable(&igen,iseed);

New:
if (igen == 0) {

genid = Nag_Basic;
subid = 1;

} else if (igen >= 1) {
genid = Nag_WichmannHill_I;
subid = igen;

}

/* nag_rand_init_nonrepeatable (g05kgc) */
nag_rand_init_nonrepeatable(genid,subid,state,&lstate,&fail);

nag_rngs_logical (g05kec)

Withdrawn at Mark 24.
Replaced by nag_rand_logical (g05tbc).

Old:
for (i = 0; i < n; i++)

/* nag_rngs_logical (g05kec) */
x[i] = nag_rngs_logical(p,igen,iseed,&fail);

New:
/* nag_rand_logical (g05tbc) */
nag_rand_logical(n,p,state,x,&fail);

The old function nag_rngs_logical (g05kec) returns a single variate at a time, whereas the new function
nag_rand_logical (g05tbc) returns a vector of n values in one go.

The Integer array state in the call to nag_rand_logical (g05tbc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_logical (g05tbc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

Introduction Replacement Calls

Mark 25 replace.35

nag_rngs_normal (g05lac)

Withdrawn at Mark 24.
Replaced by nag_rand_normal (g05skc).

Old:
/* nag_rngs_normal (g05lac) */
nag_rngs_normal(xmu,var,n,x,igen,iseed,&fail);

New:
/* nag_rand_normal (g05skc) */
nag_rand_normal(n,xmu,var,state,x,&fail);

The Integer array state in the call to nag_rand_normal (g05skc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_normal (g05skc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

nag_rngs_students_t (g05lbc)

Withdrawn at Mark 24.
Replaced by nag_rand_students_t (g05snc).

Old:
/* nag_rngs_students_t (g05lbc) */
nag_rngs_students_t(df,n,x,igen,iseed,&fail);

New:
/* nag_rand_students_t (g05snc) */
nag_rand_students_t(n,df,state,x,&fail);

The Integer array state in the call to nag_rand_students_t (g05snc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_students_t (g05snc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

nag_rngs_chi_sq (g05lcc)

Withdrawn at Mark 24.
Replaced by nag_rand_chi_sq (g05sdc).

Old:
/* nag_rngs_chi_sq (g05lcc) */
nag_rngs_chi_sq(df,n,x,igen,iseed,&fail);

New:
/* nag_rand_chi_sq (g05sdc) */
nag_rand_chi_sq(n,df,state,x,&fail);

The Integer array state in the call to nag_rand_chi_sq (g05sdc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_chi_sq (g05sdc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

nag_rngs_f (g05ldc)

Withdrawn at Mark 24.
Replaced by nag_rand_f (g05shc).

Old:
/* nag_rngs_f (g05ldc) */
nag_rngs_f(df1,df2,n,x,igen,iseed,&fail);

New:
/* nag_rand_f (g05shc) */
nag_rand_f(n,df1,df2,state,x,&fail);

The Integer array state in the call to nag_rand_f (g05shc) contains information on the base generator
being used. This array must have been initialized prior to calling nag_rand_f (g05shc) with a call to
either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The required length
of the array state will depend on the base generator chosen during initialization.

Replacement Calls NAG Library Manual

replace.36 Mark 25

nag_rngs_beta (g05lec)

Withdrawn at Mark 24.
Replaced by nag_rand_beta (g05sbc).

Old:
/* nag_rngs_beta (g05lec) */
nag_rngs_beta(a,b,n,x,igen,iseed,&fail);

New:
/* nag_rand_beta (g05sbc) */
nag_rand_beta(n,a,b,state,x,&fail);

The Integer array state in the call to nag_rand_beta (g05sbc) contains information on the base generator
being used. This array must have been initialized prior to calling nag_rand_beta (g05sbc) with a call to
either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The required length
of the array state will depend on the base generator chosen during initialization.

nag_rngs_gamma (g05lfc)

Withdrawn at Mark 24.
Replaced by nag_rand_gamma (g05sjc).

Old:
/* nag_rngs_gamma (g05lfc) */
nag_rngs_gamma(a,b,n,x,igen,iseed,&fail);

New:
/* nag_rand_gamma (g05sjc) */
nag_rand_gamma(n,a,b,state,x,&fail);

The Integer array state in the call to nag_rand_gamma (g05sjc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_gamma (g05sjc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

nag_rngs_uniform (g05lgc)

Withdrawn at Mark 24.
Replaced by nag_rand_uniform (g05sqc).

Old:
/* nag_rngs_uniform (g05lgc) */
nag_rngs_uniform(a,b,n,x,igen,iseed,&fail);

New:
/* nag_rand_uniform (g05sqc) */
nag_rand_uniform(n,a,b,state,x,&fail);

The Integer array state in the call to nag_rand_uniform (g05sqc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_uniform (g05sqc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

nag_rngs_triangular (g05lhc)

Withdrawn at Mark 24.
Replaced by nag_rand_triangular (g05spc).

Old:
/* nag_rngs_triangular (g05lhc) */
nag_rngs_triangular(xmin,xmax,xmed,n,x,igen,iseed,&fail);

New:
/* nag_rand_triangular (g05spc) */
nag_rand_triangular(n,xmin,xmed,xmax,state,x,&fail);

The Integer array state in the call to nag_rand_triangular (g05spc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_triangular (g05spc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

Introduction Replacement Calls

Mark 25 replace.37

nag_rngs_exp (g05ljc)

Withdrawn at Mark 24.
Replaced by nag_rand_exp (g05sfc).

Old:
/* nag_rngs_exp (g05ljc) */
nag_rngs_exp(a,n,x,igen,iseed,&fail);

New:
/* nag_rand_exp (g05sfc) */
nag_rand_exp(n,a,state,x,&fail);

The Integer array state in the call to nag_rand_exp (g05sfc) contains information on the base generator
being used. This array must have been initialized prior to calling nag_rand_exp (g05sfc) with a call to
either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The required length
of the array state will depend on the base generator chosen during initialization.

nag_rngs_lognormal (g05lkc)

Withdrawn at Mark 24.
Replaced by nag_rand_lognormal (g05smc).

Old:
/* nag_rngs_lognormal (g05lkc) */
nag_rngs_lognormal(xmu,var,n,x,igen,iseed,&fail);

New:
/* nag_rand_lognormal (g05smc) */
nag_rand_lognormal(n,xmu,var,state,x,&fail);

The Integer array state in the call to nag_rand_lognormal (g05smc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_lognormal
(g05smc) with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable
(g05kgc). The required length of the array state will depend on the base generator chosen during
initialization.

nag_rngs_cauchy (g05llc)

Withdrawn at Mark 24.
Replaced by nag_rand_cauchy (g05scc).

Old:
/* nag_rngs_cauchy (g05llc) */
nag_rngs_cauchy(xmed,semiqr,n,x,igen,iseed,&fail);

New:
/* nag_rand_cauchy (g05scc) */
nag_rand_cauchy(n,xmed,semiqr,state,x,&fail);

The Integer array state in the call to nag_rand_cauchy (g05scc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_cauchy (g05scc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

nag_rngs_weibull (g05lmc)

Withdrawn at Mark 24.
Replaced by nag_rand_weibull (g05ssc).

Old:
/* nag_rngs_weibull (g05lmc) */
nag_rngs_weibull(a,b,n,x,igen,iseed,&fail);

New:
/* nag_rand_weibull (g05ssc) */
nag_rand_weibull(n,a,b,state,x,&fail);

The Integer array state in the call to nag_rand_weibull (g05ssc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_weibull (g05ssc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

Replacement Calls NAG Library Manual

replace.38 Mark 25

nag_rngs_logistic (g05lnc)

Withdrawn at Mark 24.
Replaced by nag_rand_logistic (g05slc).

Old:
/* nag_rngs_logistic (g05lnc) */
nag_rngs_logistic(a,b,n,x,igen,iseed,&fail);

New:
/* nag_rand_logistic (g05slc) */
nag_rand_logistic(n,a,b,state,x,&fail);

The Integer array state in the call to nag_rand_logistic (g05slc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_logistic (g05slc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

nag_rngs_von_mises (g05lpc)

Withdrawn at Mark 24.
Replaced by nag_rand_von_mises (g05src).

Old:
/* nag_rngs_von_mises (g05lpc) */
nag_rngs_von_mises(vk,n,x,igen,iseed,&fail);

New:
/* nag_rand_von_mises (g05src) */
nag_rand_von_mises(n,vk,state,x,&fail);

The Integer array state in the call to nag_rand_von_mises (g05src) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_von_mises (g05src)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

nag_rngs_exp_mix (g05lqc)

Withdrawn at Mark 24.
Replaced by nag_rand_exp_mix (g05sgc).

Old:
/* nag_rngs_exp_mix (g05lqc) */
nag_rngs_exp_mix(nmix,a,wgt,n,x,igen,iseed,&fail);

New:
/* nag_rand_exp_mix (g05sgc) */
nag_rand_exp_mix(n,nmix,a,wgt,state,x,&fail);

The Integer array state in the call to nag_rand_exp_mix (g05sgc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_exp_mix (g05sgc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

Introduction Replacement Calls

Mark 25 replace.39

nag_rngs_matrix_multi_students_t (g05lxc)

Withdrawn at Mark 24.
Replaced by nag_rand_matrix_multi_students_t (g05ryc).

Old:
/* nag_rngs_matrix_multi_students_t (g05lxc) */
nag_rngs_matrix_multi_students_t(order,mode,df,m,xmu,c,pdc,n,x,pdx,

igen,iseed,r,lr,&fail);
New:

if (mode == 0) {
emode = Nag_InitializeAndGenerate;

} else if (mode == 1) {
emode = Nag_InitializeReference;

} else if (mode == 2) {
emode = Nag_GenerateFromReference;

}
lr = m * (m + 1) + 2;
r = NAG_ALLOC(lr,double);

/* nag_rand_matrix_multi_students_t (g05ryc) */
nag_rand_matrix_multi_students_t(order,emode,n,df,m,xmu,c,pdc,r,lr,

state,x,pdx,&fail);

The Integer array state in the call to nag_rand_matrix_multi_students_t (g05ryc) contains information on
the base generator being used. This array must have been initialized prior to calling
nag_rand_matrix_multi_students_t (g05ryc) with a call to either nag_rand_init_repeatable (g05kfc) or
nag_rand_init_nonrepeatable (g05kgc). The required length of the array state will depend on the base
generator chosen during initialization.

nag_rgsn_matrix_multi_normal (g05lyc)

Withdrawn at Mark 24.
Replaced by nag_rand_matrix_multi_normal (g05rzc).

Old:
/* nag_rgsn_matrix_multi_normal (g05lyc) */
nag_rgsn_matrix_multi_normal(order,mode,m,xmu,c,pdc,n,x,pdx,igen,

iseed,r,lr,&fail);
New:

if (mode == 0) {
emode = Nag_InitializeAndGenerate;

} else if (mode == 1) {
emode = Nag_InitializeReference;

} else if (mode == 2) {
emode = Nag_GenerateFromReference;

}
lr = m * (m + 1) + 1;
r = NAG_ALLOC(lr,double);

/* nag_rand_matrix_multi_normal (g05rzc) */
nag_rand_matrix_multi_normal(order,emode,n,m,xmu,c,pdc,r,lr,

state,x,pdx,&fail);

The Integer array state in the call to nag_rand_matrix_multi_normal (g05rzc) contains information on
the base generator being used. This array must have been initialized prior to calling
nag_rand_matrix_multi_normal (g05rzc) with a call to either nag_rand_init_repeatable (g05kfc) or
nag_rand_init_nonrepeatable (g05kgc). The required length of the array state will depend on the base
generator chosen during initialization.

Replacement Calls NAG Library Manual

replace.40 Mark 25

nag_rngs_multi_normal (g05lzc)

Withdrawn at Mark 24.
Replaced by nag_rand_matrix_multi_normal (g05rzc).

Old:
/* nag_rngs_multi_normal (g05lzc) */
nag_rngs_multi_normal(order,mode,m,xmu,c,pdc,x,igen,iseed,r,&fail);

New:
if (mode == 0) {

emode = Nag_InitializeAndGenerate;
} else if (mode == 1) {

emode = Nag_InitializeReference;
} else if (mode == 2) {

emode = Nag_GenerateFromReference;
}
n = 1;
pdx = 1;
lr = m * (m + 1) + 1;
r = NAG_ALLOC(lr,double);

/* nag_rand_matrix_multi_normal (g05rzc) */
nag_rand_matrix_multi_normal(order,emode,n,m,xmu,c,pdc,r,lr,

state,x,pdx,&fail);

The Integer array state in the call to nag_rand_matrix_multi_normal (g05rzc) contains information on
the base generator being used. This array must have been initialized prior to calling
nag_rand_matrix_multi_normal (g05rzc) with a call to either nag_rand_init_repeatable (g05kfc) or
nag_rand_init_nonrepeatable (g05kgc). The required length of the array state will depend on the base
generator chosen during initialization.

nag_rngs_discrete_uniform (g05mac)

Withdrawn at Mark 24.
Replaced by nag_rand_discrete_uniform (g05tlc).

Old:
/* nag_rngs_discrete_uniform (g05mac) */
nag_rngs_discrete_uniform(a,b,n,x,igen,iseed,&fail);

New:
/* nag_rand_discrete_uniform (g05tlc) */
nag_rand_discrete_uniform(n,a,b,state,x,&fail);

The Integer array state in the call to nag_rand_discrete_uniform (g05tlc) contains information on the
base generator being used. This array must have been initialized prior to calling
nag_rand_discrete_uniform (g05tlc) with a call to either nag_rand_init_repeatable (g05kfc) or
nag_rand_init_nonrepeatable (g05kgc). The required length of the array state will depend on the base
generator chosen during initialization.

Introduction Replacement Calls

Mark 25 replace.41

nag_rngs_geom (g05mbc)

Withdrawn at Mark 24.
Replaced by nag_rand_geom (g05tcc).

Old:
/* nag_rngs_geom (g05mbc) */
nag_rngs_geom(mode,p,n,x,igen,iseed,r,&fail);

New:
if (mode == 0) {

emode = Nag_InitializeReference;
} else if (mode == 1) {

emode = Nag_GenerateFromReference;
} else if (mode == 2) {

emode = Nag_InitializeAndGenerate;
} else if (mode == 3) {

emode = Nag_GenerateWithoutReference;
}
lr = (emode == Nag_GenerateWithoutReference) ? 1 :

8 + (Integer) (42 / p);
r = NAG_ALLOC(lr,double);

/* nag_rand_geom (g05tcc) */
nag_rand_geom(emode,n,p,r,lr,state,x,&fail);

nag_rngs_geom (g05mbc) returned the number of trials required to get the first success, whereas
nag_rand_geom (g05tcc) returns the number of failures before the first success, therefore the value
returned by nag_rand_geom (g05tcc) is one less than the equivalent value returned from nag_rngs_geom
(g05mbc).

The Integer array state in the call to nag_rand_geom (g05tcc) contains information on the base generator
being used. This array must have been initialized prior to calling nag_rand_geom (g05tcc) with a call to
either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The required length
of the array state will depend on the base generator chosen during initialization.

nag_rngs_neg_bin (g05mcc)

Withdrawn at Mark 24.
Replaced by nag_rand_neg_bin (g05thc).

Old:
/* nag_rngs_neg_bin (g05mcc) */
nag_rngs_neg_bin(mode,m,p,n,x,igen,iseed,r,&fail);

New:
if (mode == 0) {

emode = Nag_InitializeReference;
} else if (mode == 1) {

emode = Nag_GenerateFromReference;
} else if (mode == 2) {

emode = Nag_InitializeAndGenerate;
} else if (mode == 3) {

emode = Nag_GenerateWithoutReference;
}
lr = (emode == Nag_GenerateWithoutReference) ? 1 :

28 + (Integer) ((20 * sqrt(m*p) + 30 * p) / (1 - p));
r = NAG_ALLOC(lr,double);

/* nag_rand_neg_bin (g05thc) */
nag_rand_neg_bin(emode,n,m,p,r,lr,state,x,&fail);

The Integer array state in the call to nag_rand_neg_bin (g05thc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_neg_bin (g05thc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

Replacement Calls NAG Library Manual

replace.42 Mark 25

nag_rngs_logarithmic (g05mdc)

Withdrawn at Mark 24.
Replaced by nag_rand_logarithmic (g05tfc).

Old:
/* nag_rngs_logarithmic (g05mdc) */
nag_rngs_logarithmic(mode,a,n,x,igen,iseed,r,&fail);

New:
if (mode == 0) {

emode = Nag_InitializeReference;
} else if (mode == 1) {

emode = Nag_GenerateFromReference;
} else if (mode == 2) {

emode = Nag_InitializeAndGenerate;
} else if (mode == 3) {

emode = Nag_GenerateWithoutReference;
}
lr = (emode == Nag_GenerateWithoutReference) ? 1 :

18 + (Integer) (40 / (1 - a));
r = NAG_ALLOC(lr,double);

/* nag_rand_logarithmic (g05tfc) */
nag_rand_logarithmic(emode,n,a,r,lr,state,x,&fail);

The Integer array state in the call to nag_rand_logarithmic (g05tfc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_logarithmic
(g05tfc) with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable
(g05kgc). The required length of the array state will depend on the base generator chosen during
initialization.

nag_rngs_compd_poisson (g05mec)

Withdrawn at Mark 24.
Replaced by nag_rand_compd_poisson (g05tkc).

Old:
/* nag_rngs_compd_poisson (g05mec) */
nag_rngs_compd_poisson(m,vlamda,x,igen,iseed,&fail);

New:
/* nag_rand_compd_poisson (g05tkc) */
nag_rand_compd_poisson(m,vlamda,state,x,&fail);

The Integer array state in the call to nag_rand_compd_poisson (g05tkc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_compd_poisson
(g05tkc) with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable
(g05kgc). The required length of the array state will depend on the base generator chosen during
initialization.

Introduction Replacement Calls

Mark 25 replace.43

nag_rngs_binomial (g05mjc)

Withdrawn at Mark 24.
Replaced by nag_rand_binomial (g05tac).

Old:
/* nag_rngs_binomial (g05mjc) */
nag_rngs_binomial(mode,m,p,n,x,igen,iseed,r,&fail);

New:
if (mode == 0) {

emode = Nag_InitializeReference;
} else if (mode == 1) {

emode = Nag_GenerateFromReference;
} else if (mode == 2) {

emode = Nag_InitializeAndGenerate;
} else if (mode == 3) {

emode = Nag_GenerateWithoutReference;
}
lr = (emode == Nag_GenerateWithoutReference) ? 1 :

22 + 20 * ((Integer) sqrt(m * p * (1 - p)));
r = NAG_ALLOC(lr,double);

/* nag_rand_binomial (g05tac) */
nag_rand_binomial(emode,n,m,p,r,lr,state,x,&fail);

The Integer array state in the call to nag_rand_binomial (g05tac) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_binomial (g05tac)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

nag_rngs_poisson (g05mkc)

Withdrawn at Mark 24.
Replaced by nag_rand_poisson (g05tjc).

Old:
/* nag_rngs_poisson (g05mkc) */
nag_rngs_poisson(mode,lambda,n,x,igen,iseed,r,&fail);

New:
if (mode == 0) {

emode = Nag_InitializeReference;
} else if (mode == 1) {

emode = Nag_GenerateFromReference;
} else if (mode == 2) {

emode = Nag_InitializeAndGenerate;
} else if (mode == 3) {

emode = Nag_GenerateWithoutReference;
}
lr = (emode == Nag_GenerateWithoutReference) ? 1 : 30 +

(Integer) (20 * sqrt(lambda) + lambda);
r = NAG_ALLOC(lr,double);

/* nag_rand_poisson (g05tjc) */
nag_rand_poisson(emode,n,lambda,r,lr,state,x,&fail);

The Integer array state in the call to nag_rand_poisson (g05tjc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_poisson (g05tjc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

Replacement Calls NAG Library Manual

replace.44 Mark 25

nag_rngs_hypergeometric (g05mlc)

Withdrawn at Mark 24.
Replaced by nag_rand_hypergeometric (g05tec).

Old:
/* nag_rngs_hypergeometric (g05mlc) */
nag_rngs_hypergeometric(mode,ns,np,m,n,x,igen,iseed,r,&fail);

New:
if (mode == 0) {

emode = Nag_InitializeReference;
} else if (mode == 1) {

emode = Nag_GenerateFromReference;
} else if (mode == 2) {

emode = Nag_InitializeAndGenerate;
} else if (mode == 3) {

emode = Nag_GenerateWithoutReference;
}
lr = (emode == Nag_GenerateWithoutReference) ? 1 : 28 + 20 *

((Integer) sqrt((ns * m * (np - m) * (np - ns)) /
(np * np * np)));

r = NAG_ALLOC(lr,double);

/* nag_rand_hypergeometric (g05tec) */
nag_rand_hypergeometric(emode,n,ns,np,m,r,lr,state,x,&fail);

The Integer array state in the call to nag_rand_hypergeometric (g05tec) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_hypergeometric
(g05tec) with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable
(g05kgc). The required length of the array state will depend on the base generator chosen during
initialization.

nag_rngs_gen_multinomial (g05mrc)

Withdrawn at Mark 24.
Replaced by nag_rand_gen_multinomial (g05tgc).

Old:
/* nag_rngs_gen_multinomial (g05mrc) */
nag_rngs_gen_multinomial(order,mode,m,k,p,n,x,pdx,igen,iseed,r,&fail);

New:
if (mode == 0) {

emode = Nag_InitializeReference;
} else if (mode == 1) {

emode = Nag_GenerateFromReference;
} else if (mode == 2) {

emode = Nag_InitializeAndGenerate;
} else if (mode == 3) {

emode = Nag_GenerateWithoutReference;
}
pmax = p[0];
for (i = 1; i < k; i++)

pmax = (pmax > p[i]) ? p[i] : pmax;
lr = (emode == Nag_GenerateWithoutReference) ? 1 : 30 +

20 * ((Integer) sqrt(m * pmax * (1 - pmax)));
r = NAG_ALLOC(lr,double);

/* nag_rand_gen_multinomial (g05tgc) */
nag_rand_gen_multinomial(order,emode,n,m,k,p,r,lr,state,x,pdx,&fail);

The Integer array state in the call to nag_rand_gen_multinomial (g05tgc) contains information on the
base generator being used. This array must have been initialized prior to calling
nag_rand_gen_multinomial (g05tgc) with a call to either nag_rand_init_repeatable (g05kfc) or
nag_rand_init_nonrepeatable (g05kgc). The required length of the array state will depend on the base
generator chosen during initialization.

Introduction Replacement Calls

Mark 25 replace.45

nag_rngs_gen_discrete (g05mzc)

Withdrawn at Mark 24.
Replaced by nag_rand_gen_discrete (g05tdc).

Old:
/* nag_rngs_gen_discrete (g05mzc) */
nag_rngs_gen_discrete(mode,p,np,ip1,comp_type,n,x,igen,iseed,r,&fail);

New:
if (mode == 0) {

emode = Nag_InitializeReference;
} else if (mode == 1) {

emode = Nag_GenerateFromReference;
} else if (mode == 2) {

emode = Nag_InitializeAndGenerate;
}
itype = (comp_type == Nag_Compute_1) ? Nag_PDF : Nag_CDF;
lr = 10 + (Integer) (1.4 * np);
r = NAG_ALLOC(lr,double);

/* nag_rand_gen_discrete (g05tdc) */
nag_rand_gen_discrete(emode,n,p,np,ip1,itype,r,lr,state,x,&fail);

The Integer array state in the call to nag_rand_gen_discrete (g05tdc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_gen_discrete
(g05tdc) with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable
(g05kgc). The required length of the array state will depend on the base generator chosen during
initialization.

nag_rngs_permute (g05nac)

Withdrawn at Mark 24.
Replaced by nag_rand_permute (g05ncc).

Old:
/* nag_rngs_permute (g05nac) */
nag_rngs_permute(index,n,igen,iseed,&fail);

New:
/* nag_rand_permute (g05ncc) */
nag_rand_permute(index,n,state,&fail);

The Integer array state in the call to nag_rand_permute (g05ncc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_permute (g05ncc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

nag_rngs_sample (g05nbc)

Withdrawn at Mark 24.
Replaced by nag_rand_sample (g05ndc).

Old:
/* nag_rngs_sample (g05nbc) */
nag_rngs_sample(ipop,n,isampl,m,igen,iseed,&fail);

New:
/* nag_rand_sample (g05ndc) */
nag_rand_sample(ipop,n,isampl,m,state,&fail);

The Integer array state in the call to nag_rand_sample (g05ndc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_sample (g05ndc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

Replacement Calls NAG Library Manual

replace.46 Mark 25

nag_rngs_arma_time_series (g05pac)

Withdrawn at Mark 24.
Replaced by nag_rand_arma (g05phc).

Old:
/* nag_rngs_arma_time_series (g05pac) */
nag_rngs_arma_time_series(mode,xmean,p,phi,q,theta,avar,&var,n,x,

igen,iseed,r,&fail);
New:

if (mode == 0) {
emode = Nag_InitializeReference;

} else if (mode == 1) {
emode = Nag_GenerateFromReference;

} else if (mode == 2) {
emode = Nag_InitializeAndGenerate;

}
lr = p + q + 6 * ((p < q + 1) ? q + 1 : p);
r = NAG_ALLOC(lr,double);

/* nag_rand_arma (g05phc) */
nag_rand_arma(emode,n,xmean,p,phi,q,theta,avar,r,lr,state,&var,x,

&fail);

The Integer array state in the call to nag_rand_arma (g05phc) contains information on the base generator
being used. This array must have been initialized prior to calling nag_rand_arma (g05phc) with a call to
either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The required length
of the array state will depend on the base generator chosen during initialization.

nag_rngs_varma_time_series (g05pcc)

Withdrawn at Mark 24.
Replaced by nag_rand_varma (g05pjc).

Old:
/* nag_rngs_varma_time_series (g05pcc) */
nag_rngs_varma_time_series(order,mode,k,xmean,p,phi,q,theta,

var,pdv,n,x,pdx,igen,iseed,r,&fail);
New:

if (mode == 0) {
emode = Nag_InitializeReference;

} else if (mode == 1) {
emode = Nag_GenerateFromReference;

} else if (mode == 2) {
emode = Nag_InitializeAndGenerate;

} else if (mode == 3) {
emode = Nag_ReGenerateFromReference;

}
tmp1 = (p > q) ? p : q;
if (p == 0) {

tmp2 = k * (k + 1) / 2;
} else {

tmp2 = k*(k+1)/2 + (p-1)*k*k;
}
tmp3 = p + q;
if (k >= 6) {

lr = (5*tmp1*tmp1+1)*k*k + (4*tmp1+3)*k + 4;
} else {

tmp4 = k*tmp1*(k*tmp1+2);
tmp5 = k*k*tmp3*tmp3+tmp2*(tmp2+3)+k*k*(q+1);
lr = (tmp3*tmp3+1)*k*k + (4*tmp3+3)*k +

((tmp4 > tmp5) ? tmp4 : tmp5) + 4;
}
r = NAG_ALLOC(lr,double);

/* nag_rand_varma (g05pjc) */
nag_rand_varma(order,emode,n,k,xmean,p,phi,q,theta,var,pdv,r,lr,

state,x,pdx,&fail);

Introduction Replacement Calls

Mark 25 replace.47

The Integer array state in the call to nag_rand_varma (g05pjc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_varma (g05pjc)
with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc). The
required length of the array state will depend on the base generator chosen during initialization.

nag_rngs_orthog_matrix (g05qac)

Withdrawn at Mark 24.
Replaced by nag_rand_orthog_matrix (g05pxc).

Old:
/* nag_rngs_orthog_matrix (g05qac) */
nag_rngs_orthog_matrix(order,side,init,m,n,a,pda,igen,iseed,&fail);

New:
if (order == Nag_RowMajor) {

/* nag_rand_orthog_matrix (g05pxc) */
nag_rand_orthog_matrix(side,init,m,n,state,a,pda,&fail);

} else {
tside = (side == Nag_LeftSide) ? Nag_RightSide : Nag_LeftSide;
pda = m;

/* nag_rand_orthog_matrix (g05pxc) */
nag_rand_orthog_matrix(tside,init,n,m,state,a,pda,&fail);

}

The Integer array state in the call to nag_rand_orthog_matrix (g05pxc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_orthog_matrix
(g05pxc) with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable
(g05kgc). The required length of the array state will depend on the base generator chosen during
initialization.

nag_rngs_corr_matrix (g05qbc)

Withdrawn at Mark 24.
Replaced by nag_rand_corr_matrix (g05pyc).

Old:
/* nag_rngs_corr_matrix (g05qbc) */
nag_rngs_corr_matrix(order,n,d,c,pdc,eps,igen,iseed,&fail);

New:
/* nag_rand_corr_matrix (g05pyc) */
nag_rand_corr_matrix(n,d,eps,state,c,pdc,&fail);

The Integer array state in the call to nag_rand_corr_matrix (g05pyc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_corr_matrix
(g05pyc) with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable
(g05kgc). The required length of the array state will depend on the base generator chosen during
initialization.

Replacement Calls NAG Library Manual

replace.48 Mark 25

nag_rngs_2_way_table (g05qdc)

Withdrawn at Mark 24.
Replaced by nag_rand_2_way_table (g05pzc).

Old:
/* nag_rngs_2_way_table (g05qdc) */
nag_rngs_2_way_table(order,mode,nrow,ncol,totr,totc,x,pdx,igen,

iseed,r,nr,&fail);
New:

if (mode == 0) {
emode = Nag_InitializeReference;

} else if (mode == 1) {
emode = Nag_GenerateFromReference;

} else if (mode == 2) {
emode = Nag_InitializeAndGenerate;

}
for (i = 0, lr = 5; i < nrow; i++)

lr += totr[i];
r = NAG_ALLOC(lr,double);
if (order == Nag_RowMajor) {

/* nag_rand_2_way_table (g05pzc) */
nag_rand_2_way_table(emode,nrow,ncol,totr,totc,r,lr,state,x,pdx,

&fail);
} else {

pdx = nrow;

/* nag_rand_2_way_table (g05pzc) */
nag_rand_2_way_table(emode,ncol,nrow,totc,totr,r,lr,state,x,pdx,

&fail);
}

The Integer array state in the call to nag_rand_2_way_table (g05pzc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_2_way_table
(g05pzc) with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable
(g05kgc). The required length of the array state will depend on the base generator chosen during
initialization.

nag_rngs_copula_normal (g05rac)

Withdrawn at Mark 24.
Replaced by nag_rand_copula_normal (g05rdc).

Old:
/* nag_rngs_copula_normal (g05rac) */
nag_rngs_copula_normal(order,mode,m,c,pdc,n,x,pdx,igen,iseed,r,lr,

&fail);
New:

if (mode == 1) {
emode = Nag_InitializeReference;

} else if (mode == 2) {
emode = Nag_GenerateFromReference;

} else if (mode == 0) {
emode = Nag_InitializeAndGenerate;

}
lr = m * (m + 1) + 1;
r = NAG_ALLOC(lr,double);

/* nag_rand_copula_normal (g05rdc) */
nag_rand_copula_normal(order,emode,n,m,c,pdc,r,lr,state,x,pdx,

&fail);

The Integer array state in the call to nag_rand_copula_normal (g05rdc) contains information on the base
generator being used. This array must have been initialized prior to calling nag_rand_copula_normal
(g05rdc) with a call to either nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable
(g05kgc). The required length of the array state will depend on the base generator chosen during
initialization.

Introduction Replacement Calls

Mark 25 replace.49

nag_rngs_copula_students_t (g05rbc)

Withdrawn at Mark 24.
Replaced by nag_rand_copula_students_t (g05rcc).

Old:
/* nag_rngs_copula_students_t (g05rbc) */
nag_rngs_copula_students_t(order,mode,df,m,c,pdc,n,x,pdx,igen,

iseed,r,lr,&fail);
New:

if (mode == 1) {
emode = Nag_InitializeReference;

} else if (mode == 2) {
emode = Nag_GenerateFromReference;

} else if (mode == 0) {
emode = Nag_InitializeAndGenerate;

}

/* nag_rand_copula_students_t (g05rcc) */
nag_rand_copula_students_t(order,emode,n,df,m,c,pdc,r,lr,

state,x,pdx,&fail);

The Integer array state in the call to nag_rand_copula_students_t (g05rcc) contains information on the
base generator being used. This array must have been initialized prior to calling
nag_rand_copula_students_t (g05rcc) with a call to either nag_rand_init_repeatable (g05kfc) or
nag_rand_init_nonrepeatable (g05kgc). The required length of the array state will depend on the base
generator chosen during initialization.

nag_quasi_random_uniform (g05yac)

Withdrawn at Mark 24.
Replaced by nag_quasi_init (g05ylc) and nag_quasi_rand_uniform (g05ymc).

Old:
/* nag_quasi_random_uniform (g05yac) */
nag_quasi_random_uniform(state,seq,iskip,idim,quasi,&gf,&fail);

New:
liref = (seq == Nag_QuasiRandom_Faure) ? 407 : 32 * idim + 7;
iref = NAG_ALLOC(liref,Integer);
seq = (seq == Nag_QuasiRandom_Sobol) ?

Nag_QuasiRandom_SobolA659 : seq;

if (state == Nag_QuasiRandom_Init) {
/* nag_quasi_init (g05ylc) */
nag_quasi_init(seq,idim,iref,liref,iskip,&fail);

} else if (state == Nag_QuasiRandom_Cont) {
n = 1;
pdquasi = (order == Nag_RowMajor) ? idim : n;

/* nag_quasi_rand_uniform (g05ymc) */
nag_quasi_rand_uniform(order,n,quasi,pdquasi,iref,&fail);

}

nag_quasi_random_uniform (g05yac) has been split into two functions; nag_quasi_init (g05ylc) to
initialize the quasi-random generators and nag_quasi_rand_uniform (g05ymc) to generate the values.
nag_quasi_rand_uniform (g05ymc) will generate more than one realization at a time. Information is
passed between nag_quasi_init (g05ylc) and nag_quasi_rand_uniform (g05ymc) using the integer vector
iref rather than the NAG defined structure gf. Therefore there is no longer any need to call a function to
release memory as iref can be "freed" like any C array.

Replacement Calls NAG Library Manual

replace.50 Mark 25

nag_quasi_random_normal (g05ybc)

Withdrawn at Mark 24.
Replaced by nag_quasi_rand_normal (g05yjc) and nag_quasi_init (g05ylc).

Old:
/* nag_quasi_random_normal (g05ybc) */
nag_quasi_random_normal(state,seq,lnorm,mean,std,iskip,idim,

quasi,&gf,&fail);
New:

liref = (seq == Nag_QuasiRandom_Faure) ? 407 : 32 * idim + 7;
iref = NAG_ALLOC(liref,Integer);
seq = (seq == Nag_QuasiRandom_Sobol) ?

Nag_QuasiRandom_SobolA659 : seq;

if (state == Nag_QuasiRandom_Init) {
/* nag_quasi_init (g05ylc) */
nag_quasi_init(seq,idim,iref,liref,iskip,&fail);

} else if (state == Nag_QuasiRandom_Cont) {
n = 1;
pdquasi = (order == Nag_RowMajor) ? idim : n;

if (lnorm == Nag_LogNormal) {
/* nag_quasi_rand_lognormal (g05ykc) */
nag_quasi_rand_lognormal(order,mean,std,n,quasi,pdquasi,iref,

&fail);
} else if (lnorm == Nag_Normal) {

/* nag_quasi_rand_normal (g05yjc) */
nag_quasi_rand_normal(order,mean,std,n,quasi,pdquasi,iref,&fail);

}
}

nag_quasi_random_normal (g05ybc) has been split into three functions; nag_quasi_init (g05ylc) to
initialize the quasi-random generators, nag_quasi_rand_lognormal (g05ykc) to generate values from a
log-normal distribution and nag_quasi_rand_normal (g05yjc) to generate values from a normal
distribution. Both nag_quasi_rand_lognormal (g05ykc) and nag_quasi_rand_normal (g05yjc) will
generate more than one realization at a time. Information is passed between nag_quasi_init (g05ylc) and
nag_quasi_rand_lognormal (g05ykc) and nag_quasi_rand_normal (g05yjc) using the integer vector iref
rather than the NAG defined structure gf. Therefore there is no longer any need to call a function to
release memory as iref can be "freed" like any C array.

g10 – Smoothing in Statistics

nag_kernel_density_estim (g10bac)

Scheduled for withdrawal at Mark 26.
Replaced by nag_kernel_density_gauss (g10bbc).

Old: nag_kernel_density_estim(n, x, window, low, high, ns, smooth, t, &fail);

New: assert(rcomm = NAG_ALLOC(ns+20,double));
nag_kernel_density_gauss(n, x, Nag_WindowSupplied, &window, &low, &high, ns,

smooth, t, Nag_TRUE, rcomm, &fail);

x02 – Machine Constants

nag_underflow_flag (X02DAC)

Withdrawn at Mark 24.
There is no replacement for this function.

nag_real_arithmetic_rounds (X02DJC)

Withdrawn at Mark 24.
There is no replacement for this function.

Introduction Replacement Calls

Mark 25 replace.51

x04 – Input/Output Utilities

nag_example_file_io (x04aec)

Withdrawn at Mark 25.
There is no replacement for this function.

Replacement Calls NAG Library Manual

replace.52 (last) Mark 25

	Advice on Replacement Calls for Withdrawn/Superseded Functions
	1
	1.1
	1.2
	1.3
	1.4
	1.5
	1.6
	1.7
	1.8
	1.9

	2
	2.1
	2.2
	2.3
	2.4
	2.5
	2.6
	2.7
	2.8
	2.9
	2.10
	2.11
	2.12

	3
	3.1
	3.2
	3.3
	3.4
	3.5
	3.6
	3.7
	3.8
	3.9
	3.10
	3.11
	3.12

	4
	4.1
	4.2
	4.3
	4.4
	4.5
	4.6
	4.7

	5
	5.1
	5.2
	5.3

	6
	6.1
	6.2

	7
	7.1
	7.2
	7.3
	7.4
	7.5
	7.6
	7.7

	8
	8.1
	8.2
	8.3
	8.4
	8.5
	8.6
	8.7
	8.8
	8.9
	8.10
	8.11

	9
	9.1
	9.2
	9.3

	10
	10.1
	10.2
	10.3
	10.4
	10.5
	10.6

	11
	11.1
	11.2
	11.3
	11.4
	11.5
	11.6
	11.7
	11.8
	11.9
	11.10
	11.11
	11.12
	11.13
	11.14
	11.15
	11.16
	11.17
	11.18
	11.19
	11.20
	11.21
	11.22
	11.23
	11.24
	11.25
	11.26
	11.27
	11.28
	11.29
	11.30
	11.31
	11.32
	11.33
	11.34
	11.35
	11.36
	11.37
	11.38
	11.39
	11.40
	11.41
	11.42
	11.43
	11.44
	11.45
	11.46
	11.47
	11.48

	12
	12.1
	12.2

	13
	13.1

	14
	14.1
	14.2
	14.3
	14.4
	14.5
	14.6
	14.7
	14.8
	14.9
	14.10
	14.11
	14.12
	14.13
	14.14
	14.15
	14.16
	14.17
	14.18
	14.19
	14.20
	14.21
	14.22
	14.23
	14.24
	14.25
	14.26
	14.27
	14.28
	14.29
	14.30
	14.31
	14.32
	14.33
	14.34
	14.35
	14.36
	14.37
	14.38
	14.39
	14.40
	14.41
	14.42
	14.43
	14.44
	14.45
	14.46
	14.47
	14.48
	14.49
	14.50
	14.51
	14.52
	14.53
	14.54
	14.55
	14.56
	14.57
	14.58
	14.59
	14.60
	14.61
	14.62
	14.63
	14.64
	14.65
	14.66

	15
	15.1

	16
	16.1
	16.2

	17
	17.1

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

