
NAG Library Function Document

nag_binary_factor (g11sac)

1 Purpose

nag_binary_factor (g11sac) fits a latent variable model (with a single factor) to data consisting of a set of
measurements on individuals in the form of binary-valued sequences (generally referred to as score
patterns). Various measures of goodness-of-fit are calculated along with the factor (theta) scores.

2 Specification

#include <nag.h>
#include <nagg11.h>

void nag_binary_factor (Nag_OrderType order, Integer p, Integer n,
Nag_Boolean gprob, Integer ns, Nag_Boolean x[], Integer pdx,
Integer irl[], double a[], double c[], Integer iprint,
const char *outfile, double cgetol, Integer maxit, Nag_Boolean chisqr,
Integer *niter, double alpha[], double pigam[], double cm[],
Integer pdcm, double g[], double expp[], Integer pde, double obs[],
double exf[], double y[], Integer iob[], double *rlogl, double *chi,
Integer *idf, double *siglev, NagError *fail)

3 Description

Given a set of p dichotomous variables ~x ¼ x1; x2; . . . ; xp
� �0

, where 0 denotes vector or matrix transpose,
the objective is to investigate whether the association between them can be adequately explained by a
latent variable model of the form (see Bartholomew (1980) and Bartholomew (1987))

G �i �ð Þf g ¼ �i0 þ �i1�: ð1Þ

The xi are called item responses and take the value 0 or 1. � denotes the latent variable assumed to have
a standard Normal distribution over a population of individuals to be tested on p items. Call
�i �ð Þ ¼ P xi ¼ 1 j �ð Þ the item response function: it represents the probability that an individual with
latent ability � will produce a positive response (1) to item i. �i0 and �i1 are item parameters which can
assume any real values. The set of parameters, �i1, for i ¼ 1; 2; . . . ; p, being coefficients of the
unobserved variable �, can be interpreted as ‘factor loadings’.

G is a function selected by you as either ��1 or logit, mapping the interval 0; 1ð Þ onto the whole real
line. Data from a random sample of n individuals takes the form of the matrices X and R defined below:

Xs�p ¼

x11 x12 . . . x1p

x21 x22 . . . x2p

..

. ..
. ..

.

xs1 xs2 . . . xsp

2
6664

3
7775 ¼

~x1

~x2

..

.

~xs

2
6664

3
7775; Rs�1 ¼

r1
r2

..

.

rs

2
6664

3
7775

where ~xl ¼ xl1; xl2; . . . ; xlp
� �

denotes the lth score pattern in the sample, rl the frequency with which ~xl

occurs and s the number of different score patterns observed. (Thus
Xs
l¼1

rl ¼ n). It can be shown that the

log-likelihood function is proportional to

Xs
l¼1

rllogPl;

where

g11 – Contingency Table Analysis g11sac

Mark 25 g11sac.1

Pl ¼ P ~x ¼ ~xlð Þ ¼
Z 1
�1
P ~x ¼ ~xl j �ð Þ� �ð Þ d� ð2Þ

(� �ð Þ being the probability density function of a standard Normal random variable).

Pl denotes the unconditional probability of observing score pattern ~xl. The integral in (2) is
approximated using Gauss–Hermite quadrature. If we take G zð Þ ¼ logit z ¼ log z

1�z
� �

in (1) and
reparameterise as follows,

�i ¼ �i1;
�i ¼ logit�1 �i0;

then (1) reduces to the logit model (see Bartholomew (1980))

�i �ð Þ ¼
�i

�i þ 1� �ið Þ exp ��i�ð Þ:

If we take G zð Þ ¼ ��1 zð Þ (where � is the cumulative distribution function of a standard Normal random
variable) and reparameterise as follows,

�i ¼
�i1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
i1

� �q

�i ¼ ��i0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

i1

� �q
;

then (1) reduces to the probit model (see Bock and Aitkin (1981))

�i �ð Þ ¼ �
�i�� �iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
i

� �q
0
B@

1
CA:

An E-M algorithm (see Bock and Aitkin (1981)) is used to maximize the log-likelihood function. The
number of quadrature points used is set initially to 10 and once convergence is attained increased to 20.

The theta score of an individual responding in score pattern ~xl is computed as the posterior mean, i.e.,

E � j ~xlð Þ. For the logit model the component score Xl ¼
Xp
j¼1

�jxlj is also calculated. (Note that in

calculating the theta scores and measures of goodness-of-fit nag_binary_factor (g11sac) automatically
reverses the coding on item j if �j < 0; it is assumed in the model that a response at the one level is
showing a higher measure of latent ability than a response at the zero level.)

The frequency distribution of score patterns is required as input data. If your data is in the form of
individual score patterns (uncounted), then nag_binary_factor_service (g11sbc) may be used to calculate
the frequency distribution.

4 References

Bartholomew D J (1980) Factor analysis for categorical data (with Discussion) J. Roy. Statist. Soc. Ser. B
42 293–321

Bartholomew D J (1987) Latent Variable Models and Factor Analysis Griffin

Bock R D and Aitkin M (1981) Marginal maximum likelihood estimation of item parameters:
Application of an E-M algorithm Psychometrika 46 443–459

g11sac NAG Library Manual

g11sac.2 Mark 25

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: p – Integer Input

On entry: p, the number of dichotomous variables.

Constraint: p � 3.

3: n – Integer Input

On entry: n, the number of individuals in the sample.

Constraint: n � 7.

4: gprob – Nag_Boolean Input

On entry: must be set equal to Nag_TRUE if G zð Þ ¼ ��1 zð Þ and Nag_FALSE if G zð Þ ¼ logit z.

5: ns – Integer Input

On entry: ns must be set equal to the number of different score patterns in the sample, s.

Constraint: 2� p < ns � min 2p;nð Þ.

6: x½dim� – Nag_Boolean Input/Output

Note: the dimension, dim, of the array x must be at least

max 1;pdx� pð Þ when order ¼ Nag ColMajor;
max 1;ns� pdxð Þ when order ¼ Nag RowMajor.

Where X l; jð Þ appears in this document, it refers to the array element

x½ j� 1ð Þ � pdxþ l� 1� when order ¼ Nag ColMajor;
x½ l� 1ð Þ � pdxþ j� 1� when order ¼ Nag RowMajor.

On entry: the first s rows of x must contain the s different score patterns. The lth row of x must
contain the lth score pattern with X l; jð Þ set equal to Nag_TRUE if xlj ¼ 1 and Nag_FALSE if
xlj ¼ 0. All rows of x must be distinct.

On exit: given a valid parameter set then the first s rows of x still contain the s different score
patterns. However, the following points should be noted:

(i) If the estimated factor loading for the jth item is negative then that item is re-coded, i.e., 0s
and 1s (or Nag_TRUE and Nag_FALSE) in the jth column of x are interchanged.

(ii) The rows of x will be reordered so that the theta scores corresponding to rows of x are in
increasing order of magnitude.

7: pdx – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array x.

Constraints:

if order ¼ Nag ColMajor, pdx � ns;
if order ¼ Nag RowMajor, pdx � p.

g11 – Contingency Table Analysis g11sac

Mark 25 g11sac.3

8: irl½ns� – Integer Input/Output

On entry: the ith component of irl must be set equal to the frequency with which the ith row of x
occurs.

Constraints:

irl½i � 1� � 0, for i ¼ 1; 2; . . . ; s;
Xs�1

i¼0

irl½i� 1� ¼ n.

On exit: given a valid parameter set then the first s components of irl are reordered as are the rows
of x.

9: a½p� – double Input/Output

On entry: a½j� 1� must be set equal to an initial estimate of �j1. In order to avoid divergence
problems with the E-M algorithm you are strongly advised to set all the a½j � 1� to 0:5.

On exit: a½j � 1� contains the latest estimate of �j1, for j ¼ 1; 2; . . . ; p. (Because of possible
recoding all elements of a will be positive.)

10: c½p� – double Input/Output

On entry: c½j� 1� must be set equal to an initial estimate of �j0. In order to avoid divergence
problems with the E-M algorithm you are strongly advised to set all the c½j � 1� to 0:0.

On exit: c½j � 1� contains the latest estimate of �j0, for j ¼ 1; 2; . . . ; p.

11: iprint – Integer Input

On entry: the frequency with which the maximum likelihood search function is to be monitored.

iprint > 0
The search is monitored once every iprint iterations, and when the number of quadrature
points is increased, and again at the final solution point.

iprint ¼ 0
The search is monitored once at the final point.

iprint < 0
The search is not monitored at all.

iprint should normally be set to a small positive number.

Suggested value: iprint ¼ 1.

12: outfile – const char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

13: cgetol – double Input

On entry: the accuracy to which the solution is required.

If cgetol is set to 10�l and on exit fail:code ¼ NE_NOERROR or NE_ZERO_DF, then all
elements of the gradient vector will be smaller than 10�l in absolute value. For most practical
purposes the value 10�4 should suffice. You should be wary of setting cgetol too small since the
convergence criterion may then have become too strict for the machine to handle.

If cgetol has been set to a value which is less than the square root of the machine precision, �,
then nag_binary_factor (g11sac) will use the value

ffiffi
�
p

instead.

g11sac NAG Library Manual

g11sac.4 Mark 25

14: maxit – Integer Input

On entry: the maximum number of iterations to be made in the maximum likelihood search. There
will be an error exit (see Section 6) if the search function has not converged in maxit iterations.

Suggested value: maxit ¼ 1000.

Constraint: maxit � 1.

15: chisqr – Nag_Boolean Input

On entry: if chisqr is set equal to Nag_TRUE, then a likelihood ratio statistic will be calculated
(see chi).

If chisqr is set equal to Nag_FALSE, no such statistic will be calculated.

16: niter – Integer * Output

On exit: given a valid parameter set then niter contains the number of iterations performed by the
maximum likelihood search function.

17: alpha½p� – double Output

On exit: given a valid parameter set then alpha½j� 1� contains the latest estimate of �j. (Because
of possible recoding all elements of alpha will be positive.)

18: pigam½p� – double Output

On exit: given a valid parameter set then pigam½j� 1� contains the latest estimate of either �j if
gprob ¼ Nag FALSE (logit model) or �j if gprob ¼ Nag TRUE (probit model).

19: cm½dim� – double Output

Note: the dimension, dim, of the array cm must be at least pdcm� 2� p.

Note: where CM i; jð Þ appears in this document, it refers to the array element

if order ¼ Nag ColMajor, cm½ j� 1ð Þ � pdcmþ i� 1�;
if order ¼ Nag RowMajor, cm½ i� 1ð Þ � pdcmþ j� 1�..

On exit: given a valid parameter set then the strict lower triangle of cm contains the correlation
matrix of the parameter estimates held in alpha and pigam on exit. The diagonal elements of cm
contain the standard errors. Thus:

CM 2� i� 1; 2� i� 1ð Þ = standard error alpha½i� 1�ð Þ
CM 2� i; 2� ið Þ = standard error pigam½i� 1�ð Þ
CM 2� i; 2� i� 1ð Þ = correlation

pigam½i� 1�; alpha½i� 1�ð Þ,

for i ¼ 1; 2; . . . ; p;

CM 2� i� 1; 2� j� 1ð Þ = correlation alpha½i� 1�; alpha½j� 1�ð Þ
CM 2� i; 2� jð Þ = correlation

pigam½i� 1�;pigam½j� 1�ð Þ
CM 2� i� 1; 2� jð Þ = correlation alpha½i� 1�;pigam½j� 1�ð Þ
CM 2� i; 2� j� 1ð Þ = correlation

alpha½j� 1�; pigam½i� 1�ð Þ,

for j ¼ 1; 2; . . . ; i� 1.

If the second derivative matrix cannot be computed then all the elements of cm are returned as
zero.

g11 – Contingency Table Analysis g11sac

Mark 25 g11sac.5

20: pdcm – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix C in the array cm.

Constraint: pdcm � 2� p.

21: g½2� p� – double Output

On exit: given a valid parameter set then g contains the estimated gradient vector corresponding to
the final point held in the arrays alpha and pigam. g½2� j � 2� contains the derivative of the log-
likelihood with respect to alpha½j � 1�, for j ¼ 1; 2; . . . ; p. g½2� j � 1� contains the derivative of
the log-likelihood with respect to pigam½j � 1�, for j ¼ 1; 2; . . . ; p.

22: expp½dim� – double Output

Note: the dimension, dim, of the array expp must be at least pde� p.

Note: where EXPP i; jð Þ appears in this document, it refers to the array element

if order ¼ Nag ColMajor, expp½ j� 1ð Þ � pdeþ i� 1�;
if order ¼ Nag RowMajor, expp½ i� 1ð Þ � pdeþ j� 1�..

On exit: given a valid parameter set then EXPP i; jð Þ contains the expected percentage of
individuals in the sample who respond positively to items i and j (j � i), corresponding to the
final point held in the arrays alpha and pigam.

23: pde – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix E in the array expp.

Constraint: pde � p.

24: obs½dim� – double Output

Note: the dimension, dim, of the array obs must be at least pde� p.

Note: where OBS i; jð Þ appears in this document, it refers to the array element

if order ¼ Nag ColMajor, obs½ j� 1ð Þ � pdeþ i� 1�;
if order ¼ Nag RowMajor, obs½ i� 1ð Þ � pdeþ j� 1�..

On exit: given a valid parameter set then OBS i; jð Þ contains the observed percentage of
individuals in the sample who responded positively to items i and j (j � i).

25: exf ½ns� – double Output

On exit: given a valid parameter set then exf ½l� 1� contains the expected frequency of the lth
score pattern (lth row of x), corresponding to the final point held in the arrays alpha and pigam.

26: y½ns� – double Output

On exit: given a valid parameter set then y½l� 1� contains the estimated theta score corresponding
to the lth row of x, for the final point held in the arrays alpha and pigam.

27: iob½ns� – Integer Output

On exit: given a valid parameter set then iob½l� 1� contains the number of items in the lth row of
x for which the response was positive (Nag_TRUE).

28: rlogl – double * Output

On exit: given a valid parameter set then rlogl contains the value of the log-likelihood kernel
corresponding to the final point held in the arrays alpha and pigam, namely

g11sac NAG Library Manual

g11sac.6 Mark 25

Xs�1

l¼0

irl½l� � log exf ½l�=nð Þ:

29: chi – double * Output

On exit: if chisqr was set equal to Nag_TRUE on entry, then given a valid parameter set, chi will
contain the value of the likelihood ratio statistic corresponding to the final parameter estimates
held in the arrays alpha and pigam, namely

2�
Xs�1

l¼0

irl½l� � log exf ½l�=irl½l�ð Þ:

The summation is over those elements of irl which are positive. If exf ½l� 1� is less than 5:0, then
adjacent score patterns are pooled (the score patterns in x being first put in order of increasing
theta score).

If chisqr has been set equal to Nag_FALSE, then chi is not used.

30: idf – Integer * Output

On exit: if chisqr was set equal to Nag_TRUE on entry, then given a valid parameter set, idf will
contain the degrees of freedom associated with the likelihood ratio statistic, chi.

idf ¼ s0 � 2� p if s0 < 2p;
idf ¼ s0 � 2� p� 1 if s0 ¼ 2p,

where s0 denotes the number of terms summed to calculate chi (s0 ¼ s only if there is no
pooling).

If chisqr has been set equal to Nag_FALSE, then idf is not used.

31: siglev – double * Output

On exit: if chisqr was set equal to Nag_TRUE on entry, then given a valid parameter set, siglev
will contain the significance level of chi based on idf degrees of freedom. If idf is zero or negative
then siglev is set to zero.

If chisqr was set equal to Nag_FALSE, then siglev is not used.

32: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, maxit ¼ valueh i.
Constraint: maxit � 1.

On entry, n ¼ valueh i.
Constraint: n � 7.

g11 – Contingency Table Analysis g11sac

Mark 25 g11sac.7

On entry, p ¼ valueh i.
Constraint: p � 3.

On entry, pdcm ¼ valueh i.
Constraint: pdcm > 0.

On entry, pde ¼ valueh i.
Constraint: pde > 0.

On entry, pdx ¼ valueh i.
Constraint: pdx > 0.

NE_INT_2

On entry, I ¼ valueh i and irl½I � 1� ¼ valueh i.
Constraint: irl½I � 1� � 0.

On entry, irl½0� þ � � � þ irl½ns� 1� ¼ valueh i and n ¼ valueh i.
Constraint: irl½0� þ � � � þ irl½ns� 1� ¼ n.

On entry, ns ¼ valueh i and n ¼ valueh i.
Constraint: ns � n.

On entry, ns ¼ valueh i and p ¼ valueh i.
Constraint: ns > 2� p.

On entry, ns ¼ valueh i and p ¼ valueh i.
Constraint: ns � 2p.

On entry, pdcm ¼ valueh i and p ¼ valueh i.
Constraint: pdcm � 2� p.

On entry, pde ¼ valueh i and p ¼ valueh i.
Constraint: pde � p

On entry, pdx ¼ valueh i and ns ¼ valueh i.
Constraint: pdx � ns.

On entry, pdx ¼ valueh i and p ¼ valueh i.
Constraint: pdx � p.

On entry, rows I and J of x are identical: I ¼ valueh i and J ¼ valueh i.

NE_INT_3

On entry, p ¼ valueh i, n ¼ valueh i and ns ¼ valueh i.
Constraint: 2� p < ns � min 2p; nð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_MAT_INV

Failure to invert Hessian matrix and maxit iterations made: maxit ¼ valueh i.
Failure to invert Hessian matrix plus Heywood case encountered.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

g11sac NAG Library Manual

g11sac.8 Mark 25

NE_NOT_CLOSE_FILE

Cannot close file valueh i.

NE_NOT_WRITE_FILE

Cannot open file valueh i for writing.

NE_REAL_ARRAY_ELEM_CONS

One of the elements of a has exceeded 10 in absolute value (Heywood case).

NE_RESPONSE_LEVEL

For at least one of the p items the responses are all at the same level.

NE_TOO_MANY_ITER

maxit iterations have been performed: maxit ¼ valueh i.

NE_ZERO_DF

Chi-squared statistic has idf degrees of freedom: idf ¼ valueh i.

7 Accuracy

On exit from nag_binary_factor (g11sac) if fail:code ¼ NE_NOERROR or NE_ZERO_DF then the
following condition will be satisfied:

max
0�i�2�p�1

g½i�j jf g < cgetol:

If fail:code ¼ NE_MAT_INV or NE_TOO_MANY_ITER on exit (i.e., maxit iterations have been
performed but the above condition does not hold), then the elements in a, c, alpha and pigam may still
be good approximations to the maximum likelihood estimates. You are advised to inspect the elements of
g to see whether this is confirmed.

8 Parallelism and Performance

nag_binary_factor (g11sac) is threaded by NAG for parallel execution in multithreaded implementations
of the NAG Library.

nag_binary_factor (g11sac) makes calls to BLAS and/or LAPACK routines, which may be threaded
within the vendor library used by this implementation. Consult the documentation for the vendor library
for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The number of iterations required in the maximum likelihood search depends upon the number of
observed variables, p, and the distance of the starting point you supplied from the solution. The number
of multiplications and divisions performed in an iteration is proportional to p.

9.2 Initial Estimates

You are strongly advised to use the recommended starting values for the elements of a and c. Divergence
may result from values you supplied even if they are very close to the solution. Divergence may also
occur when an item has nearly all its responses at one level.

g11 – Contingency Table Analysis g11sac

Mark 25 g11sac.9

9.3 Heywood Cases

As in normal factor analysis, Heywood cases can often occur, particularly when p is small and n not
very big. To overcome this difficulty the maximum likelihood search function is terminated when the
absolute value of one of the �j1 exceeds 10:0. You have the option of deciding whether to exit from
nag_binary_factor (g11sac) (by setting fail:print ¼ NAGERR DEFAULT on entry) or to permit
nag_binary_factor (g11sac) to proceed onwards as if it had exited normally from the maximum
likelihood search function (see fail:print ¼ Nag TRUE or Nag_FALSE on entry). The elements in a, c,
alpha and pigam may still be good approximations to the maximum likelihood estimates. You are
advised to inspect the elements g to see whether this is confirmed.

9.4 Goodness of Fit Statistic

When n is not very large compared to s a goodness-of-fit statistic should not be calculated as many of
the expected frequencies will then be less than 5.

9.5 First and Second Order Margins

The observed and expected percentages of sample members responding to individual and pairs of items
held in the arrays obs and expp on exit can be converted to observed and expected numbers by
multiplying all elements of these two arrays by n=100:0.

10 Example

A program to fit the logit latent variable model to the following data:

Index Score Pattern Observed Frequency
1 0000 154
2 1000 11
3 0001 42
4 0100 49
5 1001 2
6 1100 10
7 0101 27
8 0010 84
9 1101 10

10 1010 25
11 0011 75
12 0110 129
13 1011 30
14 1110 50
15 0111 181
16 1111 121

– – – –
Total 1000

10.1 Program Text

/* nag_binary_factor (g11sac) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 7, 2002.
* Mark 7b revised, 2004.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg11.h>

int main(void)

g11sac NAG Library Manual

g11sac.10 Mark 25

{
/* Scalars */
double cgetol, chi, rlogl, siglev;
Integer exit_status, i, pdcm, idf, p, iprint, is;
Integer j, maxit, n, niter, nrx, pdx, pdexpp;
/* Arrays */
double *a = 0, *alpha = 0, *c = 0, *cm = 0, *exf = 0, *expp = 0,

*g = 0, *obs = 0, *pigam = 0, *xl = 0, *y = 0;
Integer *iob = 0, *irl = 0;
char nag_enum_arg[40];
/* NAG Types */
Nag_Boolean *x = 0;
Nag_Boolean chisqr, gprob;
Nag_OrderType order;
NagError fail;

#ifdef NAG_COLUMN_MAJOR
#define X(I, J) x[(J-1)*pdx + I - 1]
#define CM(I, J) cm[(J-1)*pdcm + I - 1]
#define EXPP(I, J) expp[(J-1)*pdexpp + I - 1]

order = Nag_ColMajor;
#else
#define X(I, J) x[(I-1)*pdx + J - 1]
#define CM(I, J) cm[(I-1)*pdcm + J - 1]
#define EXPP(I, J) expp[(I-1)*pdexpp + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

exit_status = 0;
printf("nag_binary_factor (g11sac) Example Program Results\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

#ifdef _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n] ", &p, &n, &is);

#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n] ", &p, &n, &is);

#endif
if (p > 0 && is >= 0) {

/* Allocate arrays */
pdcm = 2*p;
pdexpp = p;
nrx = is;
if (!(a = NAG_ALLOC(p, double)) ||

!(alpha = NAG_ALLOC(p, double)) ||
!(c = NAG_ALLOC(p, double)) ||
!(cm = NAG_ALLOC(pdcm * 2*p, double)) ||
!(exf = NAG_ALLOC(is, double)) ||
!(expp = NAG_ALLOC(pdexpp * p, double)) ||
!(g = NAG_ALLOC(2*p, double)) ||
!(obs = NAG_ALLOC(p * p, double)) ||
!(pigam = NAG_ALLOC(p, double)) ||
!(xl = NAG_ALLOC(is, double)) ||
!(y = NAG_ALLOC(is, double)) ||
!(iob = NAG_ALLOC(is, Integer)) ||
!(irl = NAG_ALLOC(is, Integer)) ||
!(x = NAG_ALLOC(nrx * p, Nag_Boolean)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

if (order == Nag_ColMajor)

g11 – Contingency Table Analysis g11sac

Mark 25 g11sac.11

pdx = nrx;
else

pdx = p;

for (i = 1; i <= is; ++i) {
#ifdef _WIN32

scanf_s("%"NAG_IFMT"", &irl[i-1]);
#else

scanf("%"NAG_IFMT"", &irl[i-1]);
#endif

for (j = 1; j <= p; ++j) {
#ifdef _WIN32

scanf_s(" %39s", nag_enum_arg, _countof(nag_enum_arg));
#else

scanf(" %39s", nag_enum_arg);
#endif

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

X(i, j) = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);
}

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif
}
gprob = Nag_FALSE;
for (i = 1; i <= p; ++i) {

a[i-1] = 0.5;
c[i-1] = 0.0;

}

/* Set iprint > 0 to obtain intermediate output */
iprint = -1;
cgetol = 1e-4;
maxit = 1000;
chisqr = Nag_TRUE;

/* nag_binary_factor (g11sac).
* Contingency table, latent variable model for binary data
*/

nag_binary_factor(order, p, n, gprob, is, x, pdx, irl, a, c, iprint,
0, cgetol, maxit, chisqr, &niter, alpha, pigam,
cm, pdcm, g, expp, pdexpp, obs, exf, y, iob, &rlogl,
&chi, &idf, &siglev, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_binary_factor (g11sac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

printf("\n");
printf("Item Alpha (s.e.) Pi (s.e.)\n");
for (i = 1; i <= p; i++)

printf(" %"NAG_IFMT" %g (%10g) %g (%10g)\n", i,
alpha[i-1], CM(2*i-1, 2*i-1), pigam[i-1], CM(2*i, 2*i));

printf("\n");
printf("Index Observed Expected Theta Pattern\n");
printf(" Frequency Frequency Score\n");
for (i = 1; i <= is; i++) {

printf("%4"NAG_IFMT"%10"NAG_IFMT"%13.3f%13.7f ", i, irl[i-1], exf[i-1],
y[i-1]);

for (j = 1; j <= p; j++) {
if (X(i, j) == Nag_TRUE)

printf("%3s", "T");
else

printf("%3s", "F");
}
printf("\n");

}

g11sac NAG Library Manual

g11sac.12 Mark 25

printf("\n");
printf("Chi-squared test statistic = %g\n", chi);
printf("Degrees of freedom = %"NAG_IFMT"\n", idf);
printf("Significance = %g\n", siglev);

}

END:
NAG_FREE(a);
NAG_FREE(alpha);
NAG_FREE(c);
NAG_FREE(cm);
NAG_FREE(exf);
NAG_FREE(expp);
NAG_FREE(g);
NAG_FREE(obs);
NAG_FREE(pigam);
NAG_FREE(xl);
NAG_FREE(y);
NAG_FREE(iob);
NAG_FREE(irl);
NAG_FREE(x);

return exit_status;
}

10.2 Program Data

nag_binary_factor (g11sac) Example Program Data
4 1000 16
154 Nag_FALSE Nag_FALSE Nag_FALSE Nag_FALSE
11 Nag_TRUE Nag_FALSE Nag_FALSE Nag_FALSE
42 Nag_FALSE Nag_FALSE Nag_FALSE Nag_TRUE
49 Nag_FALSE Nag_TRUE Nag_FALSE Nag_FALSE
2 Nag_TRUE Nag_FALSE Nag_FALSE Nag_TRUE

10 Nag_TRUE Nag_TRUE Nag_FALSE Nag_FALSE
27 Nag_FALSE Nag_TRUE Nag_FALSE Nag_TRUE
84 Nag_FALSE Nag_FALSE Nag_TRUE Nag_FALSE
10 Nag_TRUE Nag_TRUE Nag_FALSE Nag_TRUE
25 Nag_TRUE Nag_FALSE Nag_TRUE Nag_FALSE
75 Nag_FALSE Nag_FALSE Nag_TRUE Nag_TRUE

129 Nag_FALSE Nag_TRUE Nag_TRUE Nag_FALSE
30 Nag_TRUE Nag_FALSE Nag_TRUE Nag_TRUE
50 Nag_TRUE Nag_TRUE Nag_TRUE Nag_FALSE

181 Nag_FALSE Nag_TRUE Nag_TRUE Nag_TRUE
121 Nag_TRUE Nag_TRUE Nag_TRUE Nag_TRUE

10.3 Program Results

nag_binary_factor (g11sac) Example Program Results

Item Alpha (s.e.) Pi (s.e.)
1 1.04546 (0.148087) 0.218165 (0.0173623)
2 1.40938 (0.178937) 0.604378 (0.0216392)
3 2.65916 (0.524787) 0.834117 (0.0357898)
4 1.12169 (0.139581) 0.484569 (0.0198529)

Index Observed Expected Theta Pattern
Frequency Frequency Score

1 154 147.061 -1.2734819 F F F F
2 11 13.444 -0.8730745 T F F F
3 42 42.420 -0.8462392 F F F T
4 49 54.818 -0.7468559 F T F F
5 2 5.886 -0.4941459 T F F T
6 10 8.410 -0.3994612 T T F F
7 27 27.511 -0.3743185 F T F T
8 84 92.062 -0.3319600 F F T F
9 10 6.237 -0.0186861 T T F T

10 25 21.847 0.0272335 T F T F
11 75 73.835 0.0549022 F F T T
12 129 123.766 0.1618022 F T T F

g11 – Contingency Table Analysis g11sac

Mark 25 g11sac.13

13 30 26.899 0.4658727 T F T T
14 50 50.881 0.5913486 T T T F
15 181 179.564 0.6256343 F T T T
16 121 125.360 1.1444100 T T T T

Chi-squared test statistic = 9.02731
Degrees of freedom = 7
Significance = 0.250701

g11sac NAG Library Manual

g11sac.14 (last) Mark 25

	g11sac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Bartholomew (1980)
	Bartholomew (1987)
	Bock and Aitkin (1981)

	5 Arguments
	order
	p
	n
	gprob
	ns
	x
	pdx
	irl
	a
	c
	iprint
	outfile
	cgetol
	maxit
	chisqr
	niter
	alpha
	pigam
	cm
	pdcm
	g
	expp
	pde
	obs
	exf
	y
	iob
	rlogl
	chi
	idf
	siglev
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_INTERNAL_ERROR
	NE_MAT_INV
	NE_NO_LICENCE
	NE_NOT_CLOSE_FILE
	NE_NOT_WRITE_FILE
	NE_REAL_ARRAY_ELEM_CONS
	NE_RESPONSE_LEVEL
	NE_TOO_MANY_ITER
	NE_ZERO_DF

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Timing
	9.2 Initial Estimates
	9.3 Heywood Cases
	9.4 Goodness of Fit Statistic
	9.5 First and Second Order Margins

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

