208 — Nonparametric Statistics g08cbc

NAG Library Function Document
nag 1 sample ks test (g08chc)

1 Purpose

nag 1 sample ks test (g08cbc) performs the one sample Kolmogorov—Smirnov test, using one of the
distributions provided.

2 Specification

#include <nag.h>
#include <nagg08.h>

void nag_1_sample_ks_test (Integer n, const double x[],
Nag_Distributions dist, double par[], Nag_ParaEstimates estima,
Nag_TestStatistics ntype, double *d, double *z, double *p,
NagError *fail)

3 Description

The data consist of a single sample of n observations denoted by xi,z,...,x, Let Sn(:r(i)) and
Fy (:C@) represent the sample cumulative distribution function and the theoretical (null) cumulative
distribution function respectively at the point z(;) where z(;) is the ith smallest sample observation.

The Kolmogorov—Smirnov test provides a test of the null hypothesis Hy: the data are a random sample
of observations from a theoretical distribution specified by you against one of the following alternative
hypotheses:

(i) H,: the data cannot be considered to be a random sample from the specified null distribution.

(i1) H;: the data arise from a distribution which dominates the specified null distribution. In practical
terms, this would be demonstrated if the values of the sample cumulative distribution function S,, ()
tended to exceed the corresponding values of the theoretical cumulative distribution function Fy(x).

(iii) Hj: the data arise from a distribution which is dominated by the specified null distribution. In
practical terms, this would be demonstrated if the values of the theoretical cumulative distribution
function Fy(z) tended to exceed the corresponding values of the sample cumulative distribution
function S, ().

One of the following test statistics is computed depending on the particular alternative null hypothesis
specified (see the description of the argument ntype in Section 5).

For the alternative hypothesis H;.

D,, — the largest absolute deviation between the sample cumulative distribution function and the
theoretical cumulative distribution function. Formally D, = max{D;’, D, }.

For the alternative hypothesis Hj.

D — the largest positive deviation between the sample cumulative distribution function and the
theoretical cumulative distribution function. Formally D} = max{Sn (m(i)) — F (x(i)),O} for both
discrete and continuous null distributions.

For the alternative hypothesis Hj.

D, — the largest positive deviation between the theoretical cumulative distribution function and

the sample cumulative distribution function. Formally if the null distribution is discrete then
D, = max{Fy(z)) — Su(z@;),0} and if the null distribution is continuous then

n

D;; = max{Fy(z@)) — Su(zi-1)),0}.

Mark 25 g08cbhc. 1

g08cbc NAG Library Manual

The standardized statistic Z = D x /n is also computed where D may be D,,, D, or D, depending on
the choice of the alternative hypothesis. This is the standardized value of D with no correction for
continuity applied and the distribution of Z converges asymptotically to a limiting distribution, first
derived by Kolmogorov (1933), and then tabulated by Smirnov (1948). The asymptotic distributions for
the one-sided statistics were obtained by Smirnov (1933).

The probability, under the null hypothesis, of obtaining a value of the test statistic as extreme as that
observed, is computed. If n < 100 an exact method given by Conover (1980), is used. Note that the
method used is only exact for continuous theoretical distributions and does not include Conover’s
modification for discrete distributions. This method computes the one-sided probabilities. The two-sided
probabilities are estimated by doubling the one-sided probability. This is a good estimate for small p,
that is p < 0.10, but it becomes very poor for larger p. If n > 100 then p is computed using the
Kolmogorov—Smirnov limiting distributions, see Feller (1948), Kendall and Stuart (1973), Kolmogorov
(1933), Smirnov (1933) and Smirnov (1948).

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Feller W (1948) On the Kolmogorov—Smirnov limit theorems for empirical distributions Ann. Math.
Statist. 19 179-181

Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) (3rd Edition) Griffin

b

Kolmogorov A N (1933) Sulla determinazione empirica di una legge di distribuzione Giornale dell
Istituto Italiano degli Attuari 4 83-91

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw—Hill

Smirnov N (1933) Estimate of deviation between empirical distribution functions in two independent
samples Bull. Moscow Univ. 2(2) 3-16

Smirnov N (1948) Table for estimating the goodness of fit of empirical distributions Ann. Math. Statist.
19 279-281

5 Arguments

1: n — Integer Input
On entry: n, the number of observations in the sample.

Constraint: n > 3.

2: x[n] — const double Input
On entry: the sample observations x|, xs, ..., Zy.

Constraint. the sample observations supplied must be consistent, in the usual manner, with the
null distribution chosen, as specified by the arguments dist and par. For further details see
Section 9.

3: dist — Nag_Distributions Input

On entry: the theoretical (null) distribution from which it is suspected the data may arise.

dist = Nag_Uniform
The uniform distribution over (a,b).

dist = Nag_Normal
The Normal distribution with mean j and variance o”.

dist = Nag_Gamma
The gamma distribution with shape parameteraw and scale parameter (3, where the mean

= af.

g08cbhc.2 Mark 25

208 — Nonparametric Statistics g08cbc

dist = Nag_Beta
The beta distribution with shape parameters « and (3, where the mean = a/(a + 3).

dist = Nag_Binomial
The binomial distribution with the number of trials, m, and the probability of a success, p.

dist = Nag_Exponential
The exponential distribution with parameter A, where the mean = 1/

dist = Nag_Poisson
The Poisson distribution with parameter u, where the mean = pu.

dist = Nag_NegBinomial
The negative binomial distribution with the number of trials, m, and the probability of
success, p.

dist = Nag_GenPareto
The generalized Pareto distribution with shape parameter ¢ and scale (.

Constraint. dist = Nag_Uniform, Nag Normal, Nag_Gamma, Nag_Beta, Nag Binomial,
Nag_Exponential, Nag_Poisson, Nag_NegBinomial or Nag_GenPareto.

4: par[2] — double Input/Output

On entry: if estima = Nag_ParaSupplied, par must contain the known values of the parameter(s)
of the null distribution as follows.

If a uniform distribution is used, then par[0] and par[l] must contain the boundaries a and b
respectively.

If a Normal distribution is used, then par[0] and par[l] must contain the mean, p, and the
variance, o2, respectively.

If a gamma distribution is used, then par[0] and par[l] must contain the parameters « and 3
respectively.

If a beta distribution is used, then par[0] and par[l] must contain the parameters o and (3
respectively.

If a binomial distribution is used, then par[0] and par[l] must contain the parameters m and p
respectively.

If an exponential distribution is used, then par[0] must contain the parameter \.
If a Poisson distribution is used, then par[0] must contain the parameter pu.

If a negative binomial distribution is used, par[0] and par[1] must contain the parameters m and p
respectively.

If a generalized Pareto distribution is used, par[0] and par[1] must contain the parameters & and 3
respectively.

If estima = Nag_ParaEstimated, par need not be set except when the null distribution requested is
either the binomial or the negative binomial distribution in which case par[0] must contain the
parameter m.

On exit: if estima = Nag ParaSupplied, par is unchanged; if estima = Nag ParaEstimated, and
dist = Nag_Binomial or dist = Nag NegBinomial then par[l] is estimated from the data;
otherwise par[0] and par[l] are estimated from the data.

Constraints:

if dist = Nag_Uniform, par[0] < par[1];
if dist = Nag_Normal, par[1] > 0.0;

if dist = Nag_Gamma, par[0] > 0.0 and par[1] > 0.0;

if dist = Nag Beta, par[0] > 0.0 and par[1] > 0.0 and par[0] < 10° and par[1] < 10%;

Mark 25 g08chc.3

g08cbc NAG Library Manual

10:

6

if dist = Nag_Binomial, par[0] > 1.0 and 0.0 < par[l] < 1.0 and

par[0] x par[1] x (1.0 — par[1]) < 10° and par[0] < 1/eps, where

eps = machine precision, see nag_machine precision (X02AJC);

if dist = Nag_Exponential, par[0] > 0.0;

if dist = Nag_Poisson, par[0] > 0.0 and par[0] < 10%;

if dist = Nag_NegBinomial, par[0] > 1.0 and 0.0 < par[1l] < 1.0 and
par[0] x (1.0 — par[1])/(par[1] x par[1]) < 10° and par[0] < 1/eps, where
eps = machine precision, see nag_machine precision (X02AJC);

if dist = Nag_GenPareto, par[1] > 0.

estima — Nag_ ParaEstimates Input

On entry: estima must specify whether values of the parameters of the null distribution are known
or are to be estimated from the data.

estima = Nag_ParaSupplied
Values of the parameters will be supplied in the array par described above.

estima = Nag_ParaEstimated
Parameters are to be estimated from the data except when the null distribution requested is
the binomial distribution or the negative binomial distribution in which case the first
parameter, m, must be supplied in par[0] and only the second parameter, p, is estimated
from the data.

Constraint: estima = Nag_ParaSupplied or Nag_ParaEstimated.

ntype — Nag_TestStatistics Input
On entry: the test statistic to be calculated, i.e., the choice of alternative hypothesis.

ntype = Nag_TestStatisticsDAbs
Computes D, to test Hy against H,

ntype = Nag_TestStatisticsDPos
Computes D, to test H, against H,,

ntype = Nag_TestStatisticsDNeg
Computes D, to test Hy against H3.

Constraint: ntype = Nag_TestStatisticsDAbs, Nag_TestStatisticsDPos or Nag_TestStatisticsDNeg.

d — double * Output

On exit: the Kolmogorov—Smirnov test statistic (D,,, D or D, according to the value of ntype).

z — double * Output

On exit: a standardized value, Z, of the test statistic, D, without any correction for continuity.

p — double * Output

On exit: the probability, p, associated with the observed value of D where D may be D,,, D, or
D7 depending on the value of ntype (see Section 3).

n

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

208chc.4 Mark 25

208 — Nonparametric Statistics g08cbc

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_G08CB_DATA

On entry, dist = Nag_Beta and at least one observation is illegal.
Constraint: 0 <x[i—1] <1, for i=1,2,...,n.

On entry, dist = Nag _Binomial and all observations are zero or m.
Constraint: at least one 0.0 < x[i — 1] < par[0], for i=1,2,...,n.

On entry, dist = Nag_Binomial and at least one observation is illegal.
Constraint: 0 < x[i — 1] < par[0], for i =1,2,...,n.

On entry, dist = Nag_Exponential or Nag Poisson and all observations are zero.
Constraint: at least one x[¢ — 1] > 0, for 1 =1,2,...,n.

On entry, dist = Nag_Gamma, Nag_Exponential, Nag_Poisson, Nag_NegBinomial or
Nag_GenPareto and at least one observation is negative.
Constraint: x[— 1] > 0, for 1 =1,2,...,n.

On entry, dist = Nag_Uniform and at least one observation is illegal.
Constraint: par[0] < x[i — 1] < par[l], for 1 =1,2,...,n.

NE_GO08CB_PARAM

On entry, dist = Nag_Binomial and m = par[0] = (value).

Note that m must always be supplied.

Constraint: for the binomial distribution, 1 < par[0] < 1/eps, where eps = machine precision, see
nag machine precision (X02AJC).

On entry, dist = Nag_GenPareto and estima = Nag_ParaEstimated.
The parameter estimates are invalid; the data may not be from the generalized Pareto distribution.

On entry, dist = Nag_NegBinomial and m = par[0] = (value).

Note that m must always be supplied.

Constraint: for the negative binomial distribution, 1 < par[0] < 1/eps, where
eps = machine precision, see nag_machine precision (X02AJC).

On entry, estima = Nag_ParaSupplied and par[0] = (value); par[l] = (value).
Constraint: for the beta distribution, 0 < par[0] and par[1] < 1000000.

On entry, estima = Nag_ParaSupplied and par[0] = (value); par[l] = (value).
Constraint: for the gamma distribution, par[0] and par[1] > 0.

On entry, estima = Nag_ParaSupplied and par[0] = (value); par[l] = (value).
Constraint: for the generalized Pareto distribution with par[0] < 0, 0 < x[i — 1] < —par[1]/par[0],
for i=1,2,...,n

On entry, estima = Nag ParaSupplied and par[0] = (value); par[l] = (value).
Constraint: for the uniform distribution, par[0] < par[1].

On entry, estima = Nag_ ParaSupplied and par[0] = (value).
Constraint: for the exponential distribution, par[0] > 0.

On entry, estima = Nag_ParaSupplied and par[0] = (value).
Constraint: for the Poisson distribution, 0 < par[0] < 1000000.

On entry, estima = Nag_ParaSupplied and par[l] = (value).
Constraint: for the binomial distribution, 0 < par[1] < 1.

On entry, estima = Nag_ParaSupplied and par[l] = (value).
Constraint: for the generalized Pareto distribution, par[1] > 0.

On entry, estima = Nag ParaSupplied and par[l] = (value).
Constraint: for the negative binomial distribution, 0 < par[l] < 1.

Mark 25 g08chc.5

g08cbc NAG Library Manual

On entry, estima = Nag ParaSupplied and par[l] = (value).
Constraint: for the Normal distribution, par[1] > 0.
NE_GO08CB_SAMPLE
On entry, dist = Nag_Uniform, Nag_Normal, Nag_Gamma, Nag Beta or Nag_GenPareto,
estima = Nag_ParaEstimated and the whole sample is constant. Thus the variance is zero.
NE_GO0SCB_VARIANCE

On entry, dist = Nag _Binomial, par[0] = (value), par[l] = (value).
The variance par[0] x par[l] x (1 — par[1]) exceeds 1000000.

On entry, dist = Nag NegBinomial, par[0] = (value), par[l] = (value).
The variance par[0] x (1 — par[1])/(par[l] x par[l]) exceeds 1000000.
NE_INT_ARG_LT
On entry, n = (value).
Constraint: n > 3.
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
NE NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

The approximation for p, given when n > 100, has a relative error of at most 2.5% for most cases. The
two-sided probability is approximated by doubling the one-sided probability. This is only good for small
p, i.e., p < 0.10 but very poor for large p. The error is always on the conservative side, that is the tail
probability, p, is over estimated.

8 Parallelism and Performance

nag 1 sample ks test (g08cbc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by nag_1 sample ks test (g08cbc) increases with n until n > 100 at which point it drops
and then increases slowly with n. The time may also depend on the choice of null distribution and on
whether or not the parameters are to be estimated.

The data supplied in the argument x must be consistent with the chosen null distribution as follows:
when dist = Nag_Uniform, then par[0] < z; < par[l], for i =1,2,...,n;
when dist = Nag_Normal, then there are no constraints on the x;’s;

when dist = Nag_Gamma, then z; > 0.0, for i = 1,2,...,n;

g08chc.6 Mark 25

208 — Nonparametric Statistics g08cbc

when dist = Nag Beta, then 0.0 < z; < 1.0, for: =1,2,...,n;

when dist = Nag_Binomial, then 0.0 < z; < par[0], for i = 1,2,...,n;

when dist = Nag_Exponential, then x; > 0.0, for ¢t =1,2,...,n;

when dist = Nag_Poisson, then x; > 0.0, for : = 1,2,...,n;

when dist = Nag_NegBinomial, then x; > 0.0, for ¢ = 1,2,...,n;

when dist = Nag_GenPareto and par[0] > 0.0, then z; > 0.0, for i=1,2,...,n;

when dist = Nag GenPareto and par[0] < 0.0, then 0.0<uz; < —par[l]/par[0], for
1=1,2,...,n.

10 Example

The following example program reads in a set of data consisting of 30 observations. The Kolmogorov—
Smirnov test is then applied twice, firstly to test whether the sample is taken from a uniform distribution,
U(0,2), and secondly to test whether the sample is taken from a Normal distribution where the mean and
variance are estimated from the data. In both cases we are testing against H; that is, we are doing a two
tailed test. The values of d, z and p are printed for each case.

10.1 Program Text
/* nag_1l_sample_ks_test (g08cbc) Example Program.
*

* Copyright 2014 Numerical Algorithms Group.

* Mark 6, 2000.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg08.h>

int main(void)

{
Integer exit_status = 0;
Integer i, n, np;
double d, p, *par = 0, *x = 0, z;
char nag_enum_argl[40];
Nag_TestStatistics ntype;
NagError fail;

INIT FAIL(fail);
printf("nag_1_sample_ks_test (g08cbc) Example Program Results\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("s*["\nl");
#else

scanf ("s*[*\nl");
#endif

#ifdef _WIN32

scanf_s("%"NAG_IFMT"", &n);
#else

scanf ("$"NAG_IFMT"", &n);
#endif

x = NAG_ALLOC(n, double);

printf ("\n");
for (i = 1; i <= n; ++1)
#ifdef _WIN32
scanf_s("$1lf", &x[i - 1]);
#else

Mark 25 g08chc.7

g08cbc NAG Library Manual

scanf ("%1f", &x[i - 11);
#endif
#ifdef _WIN32
scanf_s("$"NAG_IFMT"", &np) ;
#else
scanf ("$"NAG_IFMT"", &np);
#endif
if (!(par = NAG_ALLOC (np, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}

for (i = 1; i <= np; ++1i)
#ifdef _WIN32
scanf_s("%1f", &par[i - 11);
#else
scanf ("%1f", &par[i - 11);
#endif
#ifdef _WIN32
scanf_s("%39s", nag_enum_arg, _countof(nag_enum_arg)) ;
#else
scanf ("%$39s", nag_enum_arg) ;
#endif
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*
/

ntype = (Nag_TestStatistics) nag_enum_name_to_value(nag_enum_arg) ;

/* nag_1l_sample_ks_test (g08cbc).
* Performs the one-sample Kolmogorov-Smirnov test for
* standard distributions
*/
nag_1l_sample_ks_test(n, x, Nag_Uniform, par, Nag_ParaSupplied, ntype,
&z, &p, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_1l_sample_ks_test (g08cbc).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
3
printf ("Test against uniform distribution on (0,2)\n");
printf ("\n");
printf ("Test statistic D %8.4f\n", 4);
(
(

printf("Z statistic %8.4f\n", z);
printf("Tail probability = %8.4f\n", p);
printf ("\n");

#ifdef _WIN32
scanf_s("$"NAG_IFMT"", &np);

#else

scanf ("$"NAG_IFMT"", &np);
#endif

for (i = 1; i <= np; ++1i)

#ifdef _WIN32
scanf_s("s1f", &par[i - 11);
#else
scanf ("s1f", &par[i - 11);
#endif
#ifdef _WIN32
scanf_s("%39s", nag_enum_arg, _countof(nag_enum_arg)) ;
#else
scanf ("%39s", nag_enum_arg) ;
#endif
ntype = (Nag_TestStatistics) nag_enum _name_to_value(nag_enum_arg) ;

/* nag_1l_sample_ks_test (g08cbc), see above. */

nag_1_sample_ks_test(n, x, Nag_Normal, par, Nag_ParaEstimated, ntype,
&z, &p, &fail);

if (fail.code != NE_NOERROR)

g08¢chc.8

&d,

&d,

Mark 25

208 — Nonparametric Statistics g08cbc

{
printf ("Error from nag_1l_sample_ks_test (g08cbc).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}

printf ("Test against Normal distribution with parameters estimated"
" from the data\n\n");

printf("Mean = %6.4f and variance = %6.4f\n", par([0], par[1l]);
printf ("Test statistic D = %8.4f\n", 4);

printf("Z statistic = %8.4f\n", z);

printf("Tail probability = %8.4f\n", p);

END:

NAG_FREE (x) ;
NAG_FREE (par) ;

return exit_status;

}

10.2 Program Data

nag_1_sample_ks_test (g08cbc) Example Program Data
30
0.01 0.30 0.20 0.90 1.20 0.09 1.30 0.18 0.90 0.48
1.98 0.03 0.50 0.07 0.70 0.60 0.95 1.00 0.31 1.45
1.04 1.25 0.15 0.75 0.85 0.22 1.56 0.81 0.57 0.55
2 0.0 2.0 Nag_TestStatisticsDAbs
2 0.0 1.0 Nag_TestStatisticsDAbs

10.3 Program Results

nag_1l_sample_ks_test (g08cbc) Example Program Results

Test against uniform distribution on (0,2)

Test statistic D = 0.2800
Z statistic = 1.5336
Tail probability = 0.0143

Test against Normal distribution with parameters estimated from the data

Mean = 0.6967 and variance = 0.2564

Test statistic D = 0.1108
Z statistic = 0.6068
Tail probability = 0.8925

Mark 25 208cbc.9 (last)

	g08cbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Conover (1980)
	Feller (1948)
	Kendall and Stuart (1973)
	Kolmogorov (1933)
	Siegel (1956)
	Smirnov (1933)
	Smirnov (1948)

	5 Arguments
	n
	x
	dist
	par
	estima
	ntype
	d
	z
	p
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_G08CB_DATA
	NE_G08CB_PARAM
	NE_G08CB_SAMPLE
	NE_G08CB_VARIANCE
	NE_INT_ARG_LT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

