
NAG Library Function Document

nag_wilcoxon_test (g08agc)

1 Purpose

nag_wilcoxon_test (g08agc) performs the Wilcoxon signed rank test on a single sample of size n.

2 Specification

#include <nag.h>
#include <nagg08.h>

void nag_wilcoxon_test (Integer n, const double x[], double median,
Nag_TailProbability tail, Nag_IncSignZeros zeros, double *w, double *z,
double *p, Integer *non_zero, NagError *fail)

3 Description

The Wilcoxon one sample signed rank test may be used to test whether a particular sample came from a
population with a specified median. It is assumed that the population distribution is symmetric. The data
consist of a single sample of n observations denoted by x1; x2; . . . ; xn. This sample may arise from the
difference between pairs of observations from two matched samples of equal size taken from two
populations, in which case the test may be used to test whether the median of the first population is the
same as that of the second population.

The hypothesis under test, H0, often called the null hypothesis, is that the median is equal to some given
value Xmedð Þ, and this is to be tested against an alternative hypothesis H1 which is

H1 : population median 6¼ Xmed ; or

H1 : population median > Xmed ; or

H1 : population median < Xmed ,

using a two tailed, upper tailed or lower tailed probability respectively. You select the alternative
hypothesis by choosing the appropriate tail probability to be computed (see the description of argument
tail in Section 5).

The Wilcoxon test differs from the Sign test (see nag_sign_test (g08aac)) in that the magnitude of the
scores is taken into account, rather than simply the direction of such scores.

The test procedure is as follows:

(a) For each xi, for i ¼ 1; 2; . . . ; n, the signed difference di ¼ xi �Xmed is found, where Xmed is a
given test value for the median of the sample.

(b) The absolute differences dij j are ranked with rank ri and any tied values of dij j are assigned the
average of the tied ranks. You may choose whether or not to ignore any cases where di ¼ 0 by
removing them before or after ranking (see the description of the argument zeros in Section 5).

(c) The number of nonzero di’s is found.

(d) To each rank is affixed the sign of the di to which it corresponds. Let si ¼ sign dið Þri.
(e) The sum of the positive-signed ranks, W ¼

P
si>0

si ¼
Pn

i¼1 max si; 0:0ð Þ, is calculated.

nag_wilcoxon_test (g08agc) returns:

(a) The test statistic W ;

(b) The number n1 of nonzero di’s;
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(c) The approximate Normal test statistic z, where

z ¼
W � n1 n1þ1ð Þ
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(d) The tail probability, p, corresponding to W , depending on the choice of the alternative hypothesis,
H1.

If n1 � 80, p is computed exactly; otherwise, an approximation to p is returned based on an approximate
Normal statistic corrected for continuity according to the tail specified.

The value of p can be used to perform a significance test on the median against the alternative
hypothesis. Let � be the size of the significance test (that is, � is the probability of rejecting H0 when
H0 is true). If p < � then the null hypothesis is rejected. Typically � might be 0.05 or 0.01.

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Neumann N (1988) Some procedures for calculating the distributions of elementary nonparametric
teststatistics Statistical Software Newsletter 14(3) 120–126

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: n – Integer Input

On entry: the size of the sample, n.

Constraint: n � 1.

2: x½n� – const double Input

On entry: the sample observations, x1; x2; . . . ; xn.

3: median – double Input

On entry: the median test value, Xmed .

4: tail – Nag_TailProbability Input

On entry: indicates the choice of tail probability, and hence the alternative hypothesis.

tail ¼ Nag TwoTail
A two tailed probability is calculated and the alternative hypothesis is H1: population
median 6¼ Xmed .

tail ¼ Nag UpperTail
An upper tailed probability is calculated and the alternative hypothesis is H1: population
median > Xmed .

tail ¼ Nag LowerTail
A lower tailed probability is calculated and the alternative hypothesis is H1: population
median < Xmed .

Constraint: tail ¼ Nag TwoTail, Nag UpperTail or Nag LowerTail.

5: zeros – Nag_IncSignZeros Input

On entry: indicates whether or not to include the cases where di ¼ 0:0 in the ranking of the di’s.

zeros ¼ Nag IncSignZerosY
All di ¼ 0:0 are included when ranking.
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zeros ¼ Nag IncSignZerosN
All di ¼ 0:0, are ignored, that is all cases where di ¼ 0:0 are removed before ranking.

Constraint: zeros ¼ Nag IncSignZerosY or Nag IncSignZerosN.

6: w – double * Output

On exit: the Wilcoxon rank sum statistic, W , being the sum of the positive ranks.

7: z – double * Output

On exit: the approximate Normal test statistic, z, as described in Section 3.

8: p – double * Output

On exit: the tail probability, p, as specified by the argument tail.

9: non zero – Integer * Output

On exit: the number of nonzero di’s, n1.

10: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument tail had an illegal value.

On entry, argument zeros had an illegal value.

NE_G08AG_SAMP_IDEN

The whole sample is identical to the given median test value.

NE_INT_ARG_LT

On entry, n ¼ valueh i.
Constraint: n � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

7 Accuracy

The approximation used to calculate p when n1 > 80 will return a value with a relative error of less than
10 percent for most cases. The error may increase for cases where there are a large number of ties in the
sample.

8 Parallelism and Performance

Not applicable.
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9 Further Comments

The time taken by nag_wilcoxon_test (g08agc) increases with n1, until n1 > 80, from which point on the
approximation is used. The time decreases significantly at this point and increases again modestly with
n1 for n1 > 80.

10 Example

The example program performs the Wilcoxon signed rank test on two matched samples of size 8, taken
from two populations. The distribution of the differences between pairs of observations from the two
populations is assumed to be symmetric. The test is used to test whether the medians of the two
distributions of the populations are equal or not. The test statistic, the approximate Normal statistic and
the two tailed probability are computed and printed.

10.1 Program Text

/* nag_wilcoxon_test (g08agc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 6, 2000.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg08.h>

int main(void)
{

Integer exit_status = 0, i, n, non_zero;
NagError fail;
double *data = 0, median, p, w, *x = 0, *y = 0, z;

INIT_FAIL(fail);

printf("nag_wilcoxon_test (g08agc) Example Program Results");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

#ifdef _WIN32
scanf_s("%"NAG_IFMT"", &n);

#else
scanf("%"NAG_IFMT"", &n);

#endif
if (!(x = NAG_ALLOC(n, double))

|| !(y = NAG_ALLOC(n, double))
|| !(data = NAG_ALLOC(n, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (i = 1; i <= n; ++i)
#ifdef _WIN32

scanf_s("%lf", &x[i - 1]);
#else

scanf("%lf", &x[i - 1]);
#endif

for (i = 1; i <= n; ++i)

g08agc NAG Library Manual

g08agc.4 Mark 25



#ifdef _WIN32
scanf_s("%lf", &y[i - 1]);

#else
scanf("%lf", &y[i - 1]);

#endif

printf("\n\n");
printf("%s\n", "Wilcoxon one sample signed ranks test");
printf("\n");
printf("%s", "Data values\n");
for (i = 1; i <= n; ++i)

printf("%5.1f%s", x[i - 1], i%8?"":"\n");
for (i = 1; i <= n; ++i)

printf("%5.1f%s", y[i - 1], i%8?"":"\n");

for (i = 1; i <= n; ++i)
data[i - 1] = x[i - 1] - y[i - 1];

median = 0.0;
/* nag_wilcoxon_test (g08agc).
* Performs the Wilcoxon one-sample (matched pairs) signed
* rank test
*/

nag_wilcoxon_test(n, data, median, Nag_TwoTail, Nag_IncSignZerosN, &w, &z,
&p, &non_zero, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_wilcoxon_test (g08agc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("\n\n");
printf("%s%8.4f\n", "Test statistic = ", w);
printf("%s%8.4f\n", "Normalized test statistic = ", z);
printf("%s%8"NAG_IFMT"\n", "Degrees of freedom = ", non_zero);
printf("%s%8.4f\n", "Two tail probability = ", p);

END:
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(data);
return exit_status;

}

10.2 Program Data

nag_wilcoxon_test (g08agc) Example Program Data
8
82 69 73 43 58 56 76 65
63 42 74 37 51 43 80 62

10.3 Program Results

nag_wilcoxon_test (g08agc) Example Program Results

Wilcoxon one sample signed ranks test

Data values
82.0 69.0 73.0 43.0 58.0 56.0 76.0 65.0
63.0 42.0 74.0 37.0 51.0 43.0 80.0 62.0

Test statistic = 32.0000
Normalized test statistic = 1.8904
Degrees of freedom = 8
Two tail probability = 0.0547
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