
NAG Library Function Document

nag_wilcoxon_test (g08agc)

1 Purpose

nag_wilcoxon_test (g08agc) performs the Wilcoxon signed rank test on a single sample of size n.

2 Specification

#include <nag.h>
#include <nagg08.h>

void nag_wilcoxon_test (Integer n, const double x[], double median,
Nag_TailProbability tail, Nag_IncSignZeros zeros, double *w, double *z,
double *p, Integer *non_zero, NagError *fail)

3 Description

The Wilcoxon one sample signed rank test may be used to test whether a particular sample came from a
population with a specified median. It is assumed that the population distribution is symmetric. The data
consist of a single sample of n observations denoted by x1; x2; . . . ; xn. This sample may arise from the
difference between pairs of observations from two matched samples of equal size taken from two
populations, in which case the test may be used to test whether the median of the first population is the
same as that of the second population.

The hypothesis under test, H0, often called the null hypothesis, is that the median is equal to some given
value Xmedð Þ, and this is to be tested against an alternative hypothesis H1 which is

H1 : population median 6¼ Xmed ; or

H1 : population median > Xmed ; or

H1 : population median < Xmed ,

using a two tailed, upper tailed or lower tailed probability respectively. You select the alternative
hypothesis by choosing the appropriate tail probability to be computed (see the description of argument
tail in Section 5).

The Wilcoxon test differs from the Sign test (see nag_sign_test (g08aac)) in that the magnitude of the
scores is taken into account, rather than simply the direction of such scores.

The test procedure is as follows:

(a) For each xi, for i ¼ 1; 2; . . . ; n, the signed difference di ¼ xi �Xmed is found, where Xmed is a
given test value for the median of the sample.

(b) The absolute differences dij j are ranked with rank ri and any tied values of dij j are assigned the
average of the tied ranks. You may choose whether or not to ignore any cases where di ¼ 0 by
removing them before or after ranking (see the description of the argument zeros in Section 5).

(c) The number of nonzero di’s is found.

(d) To each rank is affixed the sign of the di to which it corresponds. Let si ¼ sign dið Þri.
(e) The sum of the positive-signed ranks, W ¼

P
si>0

si ¼
Pn

i¼1 max si; 0:0ð Þ, is calculated.

nag_wilcoxon_test (g08agc) returns:

(a) The test statistic W ;

(b) The number n1 of nonzero di’s;

g08 – Nonparametric Statistics g08agc

Mark 25 g08agc.1

(c) The approximate Normal test statistic z, where

z ¼
W � n1 n1þ1ð Þ

4

� �
� sign W � n1 n1þ1ð Þ

4

� �
� 1

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

Xn
i¼1

s2
i

s

(d) The tail probability, p, corresponding to W , depending on the choice of the alternative hypothesis,
H1.

If n1 � 80, p is computed exactly; otherwise, an approximation to p is returned based on an approximate
Normal statistic corrected for continuity according to the tail specified.

The value of p can be used to perform a significance test on the median against the alternative
hypothesis. Let � be the size of the significance test (that is, � is the probability of rejecting H0 when
H0 is true). If p < � then the null hypothesis is rejected. Typically � might be 0.05 or 0.01.

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Neumann N (1988) Some procedures for calculating the distributions of elementary nonparametric
teststatistics Statistical Software Newsletter 14(3) 120–126

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill

5 Arguments

1: n – Integer Input

On entry: the size of the sample, n.

Constraint: n � 1.

2: x½n� – const double Input

On entry: the sample observations, x1; x2; . . . ; xn.

3: median – double Input

On entry: the median test value, Xmed .

4: tail – Nag_TailProbability Input

On entry: indicates the choice of tail probability, and hence the alternative hypothesis.

tail ¼ Nag TwoTail
A two tailed probability is calculated and the alternative hypothesis is H1: population
median 6¼ Xmed .

tail ¼ Nag UpperTail
An upper tailed probability is calculated and the alternative hypothesis is H1: population
median > Xmed .

tail ¼ Nag LowerTail
A lower tailed probability is calculated and the alternative hypothesis is H1: population
median < Xmed .

Constraint: tail ¼ Nag TwoTail, Nag UpperTail or Nag LowerTail.

5: zeros – Nag_IncSignZeros Input

On entry: indicates whether or not to include the cases where di ¼ 0:0 in the ranking of the di’s.

zeros ¼ Nag IncSignZerosY
All di ¼ 0:0 are included when ranking.

g08agc NAG Library Manual

g08agc.2 Mark 25

zeros ¼ Nag IncSignZerosN
All di ¼ 0:0, are ignored, that is all cases where di ¼ 0:0 are removed before ranking.

Constraint: zeros ¼ Nag IncSignZerosY or Nag IncSignZerosN.

6: w – double * Output

On exit: the Wilcoxon rank sum statistic, W , being the sum of the positive ranks.

7: z – double * Output

On exit: the approximate Normal test statistic, z, as described in Section 3.

8: p – double * Output

On exit: the tail probability, p, as specified by the argument tail.

9: non zero – Integer * Output

On exit: the number of nonzero di’s, n1.

10: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument tail had an illegal value.

On entry, argument zeros had an illegal value.

NE_G08AG_SAMP_IDEN

The whole sample is identical to the given median test value.

NE_INT_ARG_LT

On entry, n ¼ valueh i.
Constraint: n � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

7 Accuracy

The approximation used to calculate p when n1 > 80 will return a value with a relative error of less than
10 percent for most cases. The error may increase for cases where there are a large number of ties in the
sample.

8 Parallelism and Performance

Not applicable.

g08 – Nonparametric Statistics g08agc

Mark 25 g08agc.3

9 Further Comments

The time taken by nag_wilcoxon_test (g08agc) increases with n1, until n1 > 80, from which point on the
approximation is used. The time decreases significantly at this point and increases again modestly with
n1 for n1 > 80.

10 Example

The example program performs the Wilcoxon signed rank test on two matched samples of size 8, taken
from two populations. The distribution of the differences between pairs of observations from the two
populations is assumed to be symmetric. The test is used to test whether the medians of the two
distributions of the populations are equal or not. The test statistic, the approximate Normal statistic and
the two tailed probability are computed and printed.

10.1 Program Text

/* nag_wilcoxon_test (g08agc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 6, 2000.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg08.h>

int main(void)
{

Integer exit_status = 0, i, n, non_zero;
NagError fail;
double *data = 0, median, p, w, *x = 0, *y = 0, z;

INIT_FAIL(fail);

printf("nag_wilcoxon_test (g08agc) Example Program Results");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

#ifdef _WIN32
scanf_s("%"NAG_IFMT"", &n);

#else
scanf("%"NAG_IFMT"", &n);

#endif
if (!(x = NAG_ALLOC(n, double))

|| !(y = NAG_ALLOC(n, double))
|| !(data = NAG_ALLOC(n, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (i = 1; i <= n; ++i)
#ifdef _WIN32

scanf_s("%lf", &x[i - 1]);
#else

scanf("%lf", &x[i - 1]);
#endif

for (i = 1; i <= n; ++i)

g08agc NAG Library Manual

g08agc.4 Mark 25

#ifdef _WIN32
scanf_s("%lf", &y[i - 1]);

#else
scanf("%lf", &y[i - 1]);

#endif

printf("\n\n");
printf("%s\n", "Wilcoxon one sample signed ranks test");
printf("\n");
printf("%s", "Data values\n");
for (i = 1; i <= n; ++i)

printf("%5.1f%s", x[i - 1], i%8?"":"\n");
for (i = 1; i <= n; ++i)

printf("%5.1f%s", y[i - 1], i%8?"":"\n");

for (i = 1; i <= n; ++i)
data[i - 1] = x[i - 1] - y[i - 1];

median = 0.0;
/* nag_wilcoxon_test (g08agc).
* Performs the Wilcoxon one-sample (matched pairs) signed
* rank test
*/

nag_wilcoxon_test(n, data, median, Nag_TwoTail, Nag_IncSignZerosN, &w, &z,
&p, &non_zero, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_wilcoxon_test (g08agc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("\n\n");
printf("%s%8.4f\n", "Test statistic = ", w);
printf("%s%8.4f\n", "Normalized test statistic = ", z);
printf("%s%8"NAG_IFMT"\n", "Degrees of freedom = ", non_zero);
printf("%s%8.4f\n", "Two tail probability = ", p);

END:
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(data);
return exit_status;

}

10.2 Program Data

nag_wilcoxon_test (g08agc) Example Program Data
8
82 69 73 43 58 56 76 65
63 42 74 37 51 43 80 62

10.3 Program Results

nag_wilcoxon_test (g08agc) Example Program Results

Wilcoxon one sample signed ranks test

Data values
82.0 69.0 73.0 43.0 58.0 56.0 76.0 65.0
63.0 42.0 74.0 37.0 51.0 43.0 80.0 62.0

Test statistic = 32.0000
Normalized test statistic = 1.8904
Degrees of freedom = 8
Two tail probability = 0.0547

g08 – Nonparametric Statistics g08agc

Mark 25 g08agc.5 (last)

	g08agc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Conover (1980)
	Neumann (1988)
	Siegel (1956)

	5 Arguments
	n
	x
	median
	tail
	zeros
	w
	z
	p
	non_zero
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_G08AG_SAMP_IDEN
	NE_INT_ARG_LT
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

