205 — Random Number Generators g05tcc

NAG Library Function Document
nag rand_geom (g05tcc)

1 Purpose

nag rand_geom (g05tcc) generates a vector of pseudorandom integers from the discrete geometric
distribution with probability p of success at a trial.

2 Specification

#include <nag.h>
#include <nagg05.h>

void nag_rand_geom (Nag_ModeRNG mode, Integer n, double p, double r[],
Integer 1lr, Integer state[], Integer x[], NagError *fail)

3 Description

nag rand_geom (g05tcc) generates n integers x; from a discrete geometric distribution, where the
probability of x; = I (a first success after I + 1 trials) is

Plzi=T)=px(1—p), I=0,1,....

The variates can be generated with or without using a search table and index. If a search table is used
then it is stored with the index in a reference vector and subsequent calls to nag rand geom (g05tcc)
with the same parameter value can then use this reference vector to generate further variates. If the
search table is not used (as recommended for small values of p) then a direct transformation of uniform
variates is used.

One of the initialization functions nag rand init_repeatable (gO5kfc) (for a repeatable sequence if
computed sequentially) or nag rand init nonrepeatable (g05kgc) (for a non-repeatable sequence) must
be called prior to the first call to nag rand geom (gO5tcc).

4 References
Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison—Wesley

5 Arguments

1: mode — Nag ModeRNG Input
On entry: a code for selecting the operation to be performed by the function.

mode = Nag_InitializeReference
Set up reference vector only.

mode = Nag_GenerateFromReference
Generate variates using reference vector set up in a prior call to nag_rand geom (g05tcc).

mode = Nag_InitializeAndGenerate
Set up reference vector and generate variates.

mode = Nag_Generate WithoutReference
Generate variates without using the reference vector.

Constraint: mode = Nag_InitializeReference, Nag_GenerateFromReference,
Nag_InitializeAndGenerate or Nag_GenerateWithoutReference.

Mark 25 g05tcc. 1

g05tcc NAG Library Manual

2: n — Integer Input
On entry: n, the number of pseudorandom numbers to be generated.

Constraint: n > 0.

3: p — double Input

On entry: the parameter p of the geometric distribution representing the probability of success at a
single trial.

Constraint: machine precision < p < 1.0 (see nag_machine precision (X02AJC)).

4: r(lr] — double Communication Array

On entry: if mode = Nag_GenerateFromReference, the reference vector from the previous call to
nag_rand_geom (g05tcc).

If mode = Nag_GenerateWithoutReference, r is not referenced and may be NULL.

On exit: if mode # Nag_GenerateWithoutReference, the reference vector.

5: Ir — Integer Input
On entry: the dimension of the array r.
Suggested value:

if mode # Nag_GenerateWithoutReference, Ir = 8 + 42/p approximately (see Section 9);
otherwise Ir = 1.

Constraints:
if mode = Nag_InitializeReference or Nag_InitializeAndGenerate, Ir > 30/p + 8;
if mode = Nag_GenerateFromReference, Ir should remain unchanged from the previous call
to nag_rand_geom (g05tcc).

6: state[dim| — Integer Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions that
must have been previously called. This array MUST be the same array passed as argument state in
the previous call to nag_rand init repeatable (g05kfc) or nag rand init_nonrepeatable (g05kgc).

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

7: x[n] — Integer Output

On exit: the n pseudorandom numbers from the specified geometric distribution.

8: fail — NagError * Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

g05tcc.2 Mark 25

205 — Random Number Generators g05tcc

NE_INT

On entry, Ir is too small when mode = Nag_InitializeReference or Nag_InitializeAndGenerate:
Ir = (value), minimum length required = (value).

On entry, n = (value).
Constraint: n > 0.
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
NE_INVALID _STATE

On entry, state vector has been corrupted or not initialized.

NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.
NE_PREV_CALL

p is not the same as when r was set up in a previous call.
Previous value of p = (value) and p = (value).

NE_REAL

On entry, p = (value).
Constraint: machine precision < p < 1.0.

p is so small that Ir would have to be larger than the largest representable integer. Use
mode = Nag_GenerateWithoutReference instead. p = (value)

NE_REF_VEC

On entry, some of the elements of the array r have been corrupted or have not been initialized.

7 Accuracy

Not applicable.

8 Parallelism and Performance

nag_rand_geom (g05tcc) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken to set up the reference vector, if used, increases with the length of array r. However, if
the reference vector is used, the time taken to generate numbers decreases as the space allotted to the
index part of r increases. Nevertheless, there is a point, depending on the distribution, where this
improvement becomes very small and the suggested value for the length of array r is designed to
approximate this point.

Mark 25 g05tcc.3

g05tcc NAG Library Manual

If p is very small then the storage requirements for the reference vector and the time taken to set up the
reference vector becomes prohibitive. In this case it is recommended that the reference vector is not
used. This is achieved by selecting mode = Nag_GenerateWithoutReference.

10 Example

This example prints 10 pseudorandom integers from a geometric distribution with parameter p = 0.001,
generated by a single call to nag rand geom (g05tcc), after initialization by nag rand_init_repeatable
(g05kfc).

10.1 Program Text

/* nag_rand_geom (g0O5tcc) Example Program.
*

* Copyright 2014 Numerical Algorithms Group.

* Mark 9, 2009.

*/
/* Pre-processor includes */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

int main(void)

{
/* Integer scalar and array declarations */
Integer exit_status = 0;
Integer i, lr, lstate;
Integer *state = 0, *x = 0;

/* NAG structures */
NagError fail;

/* Double scalar and array declarations */
double *r = 0;

/* Set the distribution parameters */
double p = 0.0010e0;

/* Set the mode we will be using. As p is small
we will not use a reference vector */
Nag_ModeRNG mode = Nag_GenerateWithoutReference;

/* Set the sample size */
Integer n = 10;

/* Choose the base generator */
Nag_BaseRNG genid = Nag_Basic;

Integer subid = 0;

/* Set the seed */

Integer seed[] = { 1762543 };
Integer lseed = 1;

/* Initialise the error structure */
INIT_FAIL(fail);

printf("nag_rand_geom (g05tcc) Example Program Results\n\n");

/* Get the length of the state array */
lstate = -1;
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
fail.message) ;

g05tcc.4 Mark 25

205 — Random Number Generators

exit_status = 1;
goto END;
}

/* Calculate the size of the reference vector,
lr = (mode != Nag_GenerateWithoutReference)?8+42/p:0;

/* Allocate arrays */

if (!(r = NAG_ALLOC(lr, double)) ||

! (state = NAG_ALLOC(lstate, Integer)) ||
! (x = NAG_ALLOC(n, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Initialise the generator to a repeatable sequence */
state,

nag_rand_init_repeatable(genid, subid, seed, lseed,

if (fail.code != NE_NOERROR)
{
printf ("Error from nag_rand_init_repeatable
fail.message) ;
exit_status = 1;
goto END;
}
/* Generate the variates,
nag_rand_geom(mode, n, p, r, lr, state, x, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_rand_geom (g0O5tcc).\n%s\n",
exit_status = 1;
goto END;
}

/* Display the variates*/

for (i = 0; 1 < n; i++)
printf ("$12"NAG_IFMT"\n", x[i]);

END:

NAG_FREE (1) ;

NAG_FREE (state) ;

NAG_FREE (x) ;

return exit_status;

10.2 Program Data

None.

10.3 Program Results

nag_rand_geom (gO5tcc) Example Program Results
451
2238
292
225
2256
708
955
239
696
397

g05tcc

if any */

&lstate, &fail);

(g05kfc) .\n%s\n",

dont use a reference vector as p is close to 0 */

fail.message);

Mark 25

g05tcc.5 (last)

	g05tcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Knuth (1981)

	5 Arguments
	mode
	n
	p
	r
	lr
	state
	x
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_INVALID_STATE
	NE_NO_LICENCE
	NE_PREV_CALL
	NE_REAL
	NE_REF_VEC

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

