
NAG Library Function Document

nag_anova_row_col (g04bcc)

1 Purpose

nag_anova_row_col (g04bcc) computes the analysis of variance for a general row and column design
together with the treatment means and standard errors.

2 Specification

#include <nag.h>
#include <nagg04.h>

void nag_anova_row_col (Integer nrep, Integer nrow, Integer ncol,
const double y[], Integer nt, const Integer it[], double *gmean,
double tmean[], double table[], double c[], Integer tdc, Integer irep[],
double rpmean[], double rmean[], double cmean[], double r[],
double ef[], double tol, Integer irdf, NagError *fail)

3 Description

In a row and column design the experimental material can be characterised by a two-way classification,
nominally called rows and columns. Each experimental unit can be considered as being located in a
particular row and column. It is assumed that all rows are of the same length and all columns are of the
same length. Sets of equal numbers of rows and columns can be grouped together to form replicates,
sometimes known as squares or rectangles, as appropriate.

If for a replicate, the number of rows, the number of columns and the number of treatments are equal
and every treatment occurs once in each row and each column then the design is a Latin square. If this is
not the case the treatments will be non-orthogonal to rows and columns. For example in the case of a
lattice square each treatment occurs only once in each square.

For a row and column design, with t treatments in r rows and c columns and b replicates or squares with
n ¼ brc observations, the linear model is:

yijk lð Þ ¼ �þ �i þ �j þ �k þ �l þ eijk

i ¼ 1; 2; . . . ; b; j ¼ 1; 2; . . . ; r;k ¼ 1; 2; . . . ; c; l ¼ 1; 2; . . . ; t, where �i is the effect of the ith replicate, �j
is the effect of the jth row, �k is the effect of the kth column and the ijk lð Þ notation indicates that the lth
treatment is applied to the unit in row j, column k of replicate i.

To compute the analysis of variance for a row and column design the mean is computed and subtracted
from the observations to give, y0ijk lð Þ ¼ yijk lð Þ � �̂. Since the replicates, rows and columns are orthogonal

the estimated effects, ignoring treatment effects, �̂i, �̂j, �̂k, can be computed using the appropriate means
of the y0ijk lð Þ, and the unadjusted sum of squares computed as the appropriate sum of squared totals for

the y0ijk lð Þ divided by number of units per total. The observations adjusted for replicates, rows and

columns can then be computed by subtracting the estimated effects from y0ijk lð Þ to give y00ijk lð Þ.

In the case of a Latin square design the treatments are orthogonal to replicates, rows and columns and so
the treatment effects, �̂l, can be estimated as the treatment means of the adjusted observations, y00ijk lð Þ. The

treatment sum of squares is computed as the sum of squared treatment totals of the y00ij lð Þ divided by the

number of times each treatment is replicated. Finally the residuals, and hence the residual sum of
squares, are given by, rij lð Þ ¼ y00ij lð Þ � �̂l.

For a design which is not orthogonal, for example a lattice square or an incomplete Latin square, the
treatment effects adjusted for replicates, rows and columns need to be computed. The adjusted treatment
effects are found as the solution to the equations:
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A�̂ ¼ R�NbN
T
b = rcð Þ �NrN

T
r = bcð Þ �NcN

T
c = brð Þ

� �
�̂ ¼ q

where q is the vector of the treatment totals of the observations adjusted for replicates, rows and
columns, y00ijk lð Þ; R is a diagonal matrix with Rll equal to the number of times the lth treatment is

replicated, and Nb is the t by b incidence matrix, with Nl;i equal to the number of times treatment l
occurs in replicate i, with Nr and Nc being similarly defined for rows and columns. The solution to the
equations can be written as:

�̂ ¼ �q

where, � is a generalized inverse of A. The solution is found from the eigenvalue decomposition of A.
The residuals are first calculated by subtracting the estimated adjusted treatment effects from the adjusted
observations to give r0ij lð Þ ¼ y00ij lð Þ � �̂l. However, since only the unadjusted replicate, row and column

effects have been removed and they are not orthogonal to treatments, the replicate, row and column
means of the r0ij lð Þ have to be subtracted to give the correct residuals, rij lð Þ and residual sum of squares.

Given the sums of squares, the mean squares are computed as the sums of squares divided by the
degrees of freedom. The degrees of freedom for the unadjusted replicates, rows and columns are b� 1,
r� 1 and c� 1 respectively and for the Latin square designs the degrees of freedom for the treatments is
t� 1. In the general case the degrees of freedom for treatments is the rank of the matrix �. The
F -statistic given by the ratio of the treatment mean square to the residual mean square tests the
hypothesis:

H0 : �1 ¼ �2 ¼ � � � ¼ �t ¼ 0:

The standard errors for the difference in treatment effects, or treatment means, for Latin square designs,
are given by:

se �̂j � �̂j�
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2= btð Þ

p

where s2 is the residual mean square. In the general case the variances of the treatment effects are given
by:

Var �̂ð Þ ¼ �s2

from which the appropriate standard errors of the difference between treatment effects or the difference
between adjusted means can be calculated.

The analysis of a row-column design can be considered as consisting of different strata: the replicate
stratum, the rows within replicate and the columns within replicate strata and the units stratum. In the
Latin square design all the information on the treatment effects is given at the units stratum. In other
designs there may be a loss of information due to the non-orthogonality of treatments and replicates,
rows and columns and information on treatments may be available in higher strata. The efficiency of the
estimation at the units stratum is given by the (canonical) efficiency factors, these are the nonzero
eigenvalues of the matrix, A, divided by the number of replicates in the case of equal replication, or by
the mean of the number of replicates in the unequally replicated case, (see John (1987)). If more than
one eigenvalue is zero then the design is said to be disconnected and information on some treatment
comparisons can only be obtained from higher strata.

4 References

Cochran W G and Cox G M (1957) Experimental Designs Wiley

Davis O L (1978) The Design and Analysis of Industrial Experiments Longman

John J A (1987) Cyclic Designs Chapman and Hall

John J A and Quenouille M H (1977) Experiments: Design and Analysis Griffin

Searle S R (1971) Linear Models Wiley
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5 Arguments

1: nrep – Integer Input

On entry: the number of replicates, b.

Constraint: nrep � 1.

2: nrow – Integer Input

On entry: the number of rows per replicate, r.

Constraint: nrow � 2.

3: ncol – Integer Input

On entry: the number of columns per replicate, c.

Constraint: ncol � 2.

4: y½nrep� nrow� ncol� – const double Input

On entry: the n ¼ brc observations ordered by columns within rows within replicates. That is
y½rc i� 1ð Þ þ r j� 1ð Þ þ k� 1� contains the observation from the k column of the jth row of the
ith replicate, i ¼ 1; 2; . . . ; b; j ¼ 1; 2; . . . ; r and k ¼ 1; 2; . . . ; c.

5: nt – Integer Input

On entry: the number of treatments. If only replicates, rows and columns are required in the
analysis then set nt ¼ 1.

Constraint: nt � 1.

6: it½�� – const Integer Input

On entry: if nt > 1, it½i� 1� indicates which of the nt treatments unit i received, i ¼ 1; 2; . . . ; n. If
nt ¼ 1, it is not referenced.

Constraint: if nt � 2, 1 � it½i � 1� � nt, for i ¼ 1; 2; . . . ; n.

7: gmean – double * Output

On exit: the grand mean, �̂.

8: tmean½nt� – double Output

On exit: if nt � 2, tmean½l� 1� contains the (adjusted) mean for the lth treatment, �̂� þ �̂l,
l ¼ 1; 2; . . . ; t, where �̂� is the mean of the treatment adjusted observations yijk lð Þ � �̂l. Otherwise
tmean is not referenced.

9: table½6� 5� – double Output

Note: the i; jð Þth element of the matrix is stored in table½ i� 1ð Þ � 5þ j� 1�.
On exit: the analysis of variance table. Column 1 contains the degrees of freedom, column 2 the
sum of squares, and where appropriate, column 3 the mean squares, column 4 the F -statistic and
column 5 the significance level of the F -statistic. Row 1 is for replicates, row 2 for rows, row 3
for columns, row 4 for treatments (if nt > 1), row 5 for residual and row 6 for total. Mean squares
are computed for all but the total row, F -statistics and significance are computed for treatments,
replicates, rows and columns. Any unfilled cells are set to zero.

10: c½nt� tdc� – double Output

On exit: the upper triangular part of c contains the variance-covariance matrix of the treatment
effects, the strictly lower triangular part contains the standard errors of the difference between two
treatment effects (means), i.e., c½ i� 1ð Þ � tdcþ j� 1� contains the covariance of treatment i and j
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if j � i and the standard error of the difference between treatment i and j if j < i, i ¼ 1; 2; . . . ; t
and j ¼ 1; 2; . . . ; t.

11: tdc – Integer Input

On entry: the stride separating matrix column elements in the array c.

Constraint: tdc � nt.

12: irep½nt� – Integer Output

On exit: if nt > 1, irep½l� 1� contains the treatment replications, Rll, l ¼ 1; 2; . . . ;nt. Otherwise
irep is not referenced.

13: rpmean½nrep� – double Output

On exit: if nrep > 1, rpmean½i� 1� contains the mean for the ith replicate, �̂þ �̂i, i ¼ 1; 2; . . . ; b.
Otherwise rpmean is not referenced.

14: rmean½nrep� nrow� – double Output

On exit: rmean½j� 1� contains the mean for the jth row, �̂þ �̂i, j ¼ 1; 2; . . . ; r.

15: cmean½nrep� ncol� – double Output

On exit: cmean½k� 1� contains the mean for the kth column, �̂þ �̂k, k ¼ 1; 2; . . . ; c.

16: r½nrep� nrow� ncol� – double Output

On exit: r½i� 1� contains the residuals, ri, i ¼ 1; 2; . . . ; n.

17: ef ½nt� – double Output

On exit: if nt � 2, the canonical efficiency factors. Otherwise ef is not referenced.

18: tol – double Input

On entry: the tolerance value used to check for zero eigenvalues of the matrix �. If tol ¼ 0:0 a
default value of 0.00001 is used.

Constraint: tol � 0:0.

19: irdf – Integer Input

On entry: an adjustment to the degrees of freedom for the residual and total.

irdf � 1
The degrees of freedom for the total is set to n� irdf and the residual degrees of freedom
adjusted accordingly.

irdf ¼ 0
The total degrees of freedom for the total is set to n� 1, as usual.

Constraint: irdf � 0.

20: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, tdc ¼ valueh i while nt ¼ valueh i. These arguments must satisfy tdc � nt.
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NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_ARRAY_CONS

The contents of array it are not valid.
Constraint: if nt � 2, 1 � it½i� � nt, for i ¼ 0; 1; 2; . . . ; nrep� nrow� ncol.
The contents of array it are not valid.
Constraint: some value of it ¼ j for all j ¼ 1; 2,. . .,nt.

NE_ARRAY_CONSTANT

On entry, the elements of the array y are constant.

NE_G04BC_DISCON

The design is disconnected, the standard errors may not be valid. The design may have a nested
structure.

NE_G04BC_REPS

The treatments are totally confounded with replicates, rows and columns, so the treatment sum of
squares and degrees of freedom are zero. The analysis of variance table is not computed, except
for replicate, row, column, total sum of squares and degrees of freedom.

NE_G04BC_RESD

The residual degrees of freedom or the residual sum of squares are zero, columns 3, 4 and 5 of the
analysis of variance table will not be computed and the matrix of standard errors and covariances,
c, will not be scaled.

NE_G04BC_ST_ERR

A computed standard error is zero due to rounding errors, or the eigenvalue computation failed to
converge. Both are unlikely errors.

NE_INT_ARG_LT

On entry, irdf ¼ valueh i.
Constraint: irdf � 0.

On entry, ncol ¼ valueh i.
Constraint: ncol � 2.

On entry, nrep ¼ valueh i.
Constraint: nrep � 1.

On entry, nrow ¼ valueh i.
Constraint: nrow � 2.

On entry, nt ¼ valueh i.
Constraint: nt � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_REAL_ARG_LT

On entry, tol must not be less than 0.0: tol ¼ valueh i.
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7 Accuracy

The algorithm used in nag_anova_row_col (g04bcc), described in Section 3, achieves greater accuracy
than the traditional algorithms based on the subtraction of sums of squares.

8 Parallelism and Performance

Not applicable.

9 Further Comments

To estimate missing values the Healy and Westmacott procedure or its derivatives may be used (see John
and Quenouille (1977)). This is an iterative procedure in which estimates of the missing values are
adjusted by subtracting the corresponding values of the residuals. The new estimates are then used in the
analysis of variance. This process is repeated until convergence. A suitable initial value may be the
grand mean. When using this procedure irdf should be set to the number of missing values plus one to
obtain the correct degrees of freedom for the residual sum of squares.

For analysis of covariance the residuals are obtained from an analysis of variance of both the response
variable and the covariates. The residuals from the response variable are then regressed on the residuals
from the covariates using, say, nag_regress_confid_interval (g02cbc) or nag_regsn_mult_linear (g02dac).
The results from those functions can be used to test for the significance of the covariates. To test the
significance of the treatment effects after fitting the covariate, the residual sum of squares from the
regression should be compared with the residual sum of squares obtained from the equivalent regression
but using the residuals from fitting replicates, rows and columns only.

10 Example

The data for a 5� 5 Latin square is input and the ANOVA and treatment means computed and printed.
Since the design is orthogonal only one standard error need be printed

10.1 Program Text

/* nag_anova_row_col (g04bcc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 6, 2000.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg04.h>

int main(void)
{

Integer c__0 = 0, exit_status = 0, i, *irep = 0, *it = 0, j, n, ncol,
nrep, nrow, nt;

NagError fail;
const char *fmt_99999[] = { "%3.0f ", "%10.4f ", "%10.4f ", "%10.4f ",

"%8.4f" };
double *c = 0, c_b20 = 1e-5, *cmean = 0, *ef = 0, gmean, *r = 0;
double *rmean = 0, *rpmean = 0, *table = 0, *tmean = 0, *y = 0;

#define TABLE(I, J) table[((I) -1)*5 + (J) -1]
#define C(I, J) c[((I) -1)*nt + (J) -1]

INIT_FAIL(fail);

printf("nag_anova_row_col (g04bcc) Example Program Results\n");

/* Skip heading in data file */
#ifdef _WIN32
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scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

#ifdef _WIN32
scanf_s("%"NAG_IFMT" %"NAG_IFMT" %"NAG_IFMT" %"NAG_IFMT"", &nrep, &nrow,

&ncol, &nt);
#else

scanf("%"NAG_IFMT" %"NAG_IFMT" %"NAG_IFMT" %"NAG_IFMT"", &nrep, &nrow,
&ncol, &nt);

#endif
if (!(c = NAG_ALLOC(nt*nt, double))

|| !(cmean = NAG_ALLOC(nrep*ncol, double))
|| !(ef = NAG_ALLOC(nt, double))
|| !(r = NAG_ALLOC(nrep*nrow*ncol, double))
|| !(y = NAG_ALLOC(nrep*nrow*ncol, double))
|| !(rmean = NAG_ALLOC(nrep*nrow, double))
|| !(rpmean = NAG_ALLOC(nrep, double))
|| !(tmean = NAG_ALLOC(nt, double))
|| !(table = NAG_ALLOC(30, double))
|| !(irep = NAG_ALLOC(nt, Integer))
|| !(it = NAG_ALLOC(nrep*nrow*ncol, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

n = nrep * nrow * ncol;
for (i = 1; i <= n; ++i)

#ifdef _WIN32
scanf_s("%lf", &y[i - 1]);

#else
scanf("%lf", &y[i - 1]);

#endif
for (i = 1; i <= n; ++i)

#ifdef _WIN32
scanf_s("%"NAG_IFMT"", &it[i - 1]);

#else
scanf("%"NAG_IFMT"", &it[i - 1]);

#endif
/* nag_anova_row_col (g04bcc).
* Analysis of variance, general row and column design,
* treatment means and standard errors
*/

nag_anova_row_col(nrep, nrow, ncol, y, nt, it, &gmean, tmean, table,
c, nt, irep, rpmean, rmean, cmean, r, ef, c_b20, c__0,
&fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_anova_row_col (g04bcc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
printf("\n ANOVA TABLE\n\n");
if (nrep > 1)

{
printf("\n Reps ");
for (j = 1; j <= 5; ++j)

printf(fmt_99999[j-1], TABLE(1, j));
}

printf("\n Rows ");
for (j = 1; j <= 5; ++j)

printf(fmt_99999[j-1], TABLE(2, j));

printf("\n Columns ");
for (j = 1; j <= 5; ++j)

printf(fmt_99999[j-1], TABLE(3, j));
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printf("\n\n Treatments ");
for (j = 1; j <= 5; ++j)

printf(fmt_99999[j-1], TABLE(4, j));

printf("\n Residual ");
for (j = 1; j <= 3; ++j)

printf(fmt_99999[j-1], TABLE(5, j));

printf("\n Total ");
for (j = 1; j <= 2; ++j)

printf(fmt_99999[j-1], TABLE(6, j));

printf("\n Treatment means\n\n");
for (i = 1; i <= nt; ++i)

printf("%10.4f%s", tmean[i - 1], i%6?"":"\n");
printf("\n\n S.E. of difference (orthogonal design) = %10.4f\n",

C(2, 1));
END:
NAG_FREE(c);
NAG_FREE(cmean);
NAG_FREE(ef);
NAG_FREE(r);
NAG_FREE(y);
NAG_FREE(rmean);
NAG_FREE(rpmean);
NAG_FREE(tmean);
NAG_FREE(table);
NAG_FREE(irep);
NAG_FREE(it);
return exit_status;

}

10.2 Program Data

nag_anova_row_col (g04bcc) Example Program Data

1 5 5 5

6.67 7.15 8.29 8.95 9.62
5.40 4.77 5.40 7.54 6.93
7.32 8.53 8.50 9.99 9.68
4.92 5.00 7.29 7.85 7.08
4.88 6.16 7.83 5.38 8.51

5 4 1 3 2
2 5 4 1 3
3 2 5 4 1
1 3 2 5 4
4 1 3 2 5

10.3 Program Results

nag_anova_row_col (g04bcc) Example Program Results

ANOVA TABLE

Rows 4 29.4231 7.3558 9.0266 0.0013
Columns 4 22.9950 5.7487 7.0545 0.0037

Treatments 4 0.5423 0.1356 0.1664 0.9514
Residual 12 9.7788 0.8149
Total 24 62.7392
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Treatment means

7.3180 7.2440 7.2060 6.9000 7.2600

S.E. of difference (orthogonal design) = 0.5709
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