202 — Correlation and Regression Analysis g02hbc

NAG Library Function Document

nag robust m_regsn_wts (g02hbc)

1 Purpose

nag_robust m_regsn wts (g02hbc) finds, for a real matrix X of full column rank, a lower triangular

matrix A such that (ATA)71 is proportional to a robust estimate of the covariance of the variables.
nag robust m regsn wts (g02Zhbc) is intended for the calculation of weights of bounded influence
regression using nag_robust m_regsn_user fn (g02hdc).

2 Specification

#include <nag.h>
#include <nagg02.h>

void nag_robust_m_regsn_wts (Nag_OrderType order,
double (*ucv) (double t, Nag_Comm *comm),

Integer n, Integer m, const double x[], Integer pdx, double all],
double z[], double bl, double bd, double tol, Integer maxit,
Integer nitmon, const char *outfile, Integer *nit, Nag_Comm *comm,
NagError *fail)

3 Description
In fitting the linear regression model

y= X0+e,

where y is a vector of length n of the dependent variable,
X is an n by m matrix of independent variables,
0 is a vector of length m of unknown arguments,
and € is a vector of length n of unknown errors,

it may be desirable to bound the influence of rows of the X matrix. This can be achieved by calculating
a weight for each observation. Several schemes for calculating weights have been proposed (see Hampel
et al. (1986) and Marazzi (1987)). As the different independent variables may be measured on different
scales one group of proposed weights aims to bound a standardized measure of influence. To obtain such
weights the matrix A has to be found such that

1 . o .
- E u(||zilly)zizf =1 (I is the identity matrix)
n#

i=1

and

Z; = Axi,

where x; is a vector of length m containing the elements of the ith row of X,
A is an m by m lower triangular matrix,
z; is a vector of length m,

and w 1S a suitable function.

Mark 25 202hbc. 1

g02hbc NAG Library Manual

The weights for use with nag robust m regsn user fn (g02hdc) may then be computed using

wi = f(Ilzll)

for a suitable user-supplied function f.

nag_robust m_regsn wts (g02hbc) finds A using the iterative procedure

A= (Sk+1)Aj_1,

where S, = (sﬂ), for j=1,2,...,mand [=1,2,...,m, is a lower triangular matrix such that

—min[max(hﬂ/n, —BL),BL], ji>1
S('[=
' —min[max(%(hjj/n 1), —BD), BD], j=1

n
hi = _u(llzilly) zijza
i=1

and BD and BL are suitable bounds.

In addition the values of ||z;||,, for ¢ =1,2,...,n, are calculated.

nag_robust m regsn wts (g02hbc) is based on routines in ROBETH; see Marazzi (1987).

4

References

Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The Approach
Based on Influence Functions Wiley

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987) Weights for bounded influence regression in ROBETH Cah. Rech. Doc. IUMSP, No. 3
ROB 3 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5

1:

Arguments

order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint. order = Nag_RowMajor or Nag_ColMajor.

ucv — function, supplied by the user External Function

ucv must return the value of the function u for a given value of its argument. The value of © must
be non-negative.

The specification of uev is:
double ucv (double t, Nag_Comm *comm)
1: t — double Input

On entry: the argument for which ucv must be evaluated.

2: comm — Nag Comm *

Pointer to structure of type Nag Comm; the following members are relevant to ucv.

g02hbc.2 Mark 25

202 — Correlation and Regression Analysis g02hbc

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag_robust m_regsn wts
(g02hbc) you may allocate memory and initialize these pointers with various
quantities for use by ucv when called from nag_robust m regsn wts (g02hbc)
(see Section 3.2.1.1 in the Essential Introduction).

3: n — Integer Input
On entry: n, the number of observations.

Constraint: n > 1.

4: m — Integer Input
On entry: m, the number of independent variables.

Constraint: 1 <m < n.

5: x[dim] — const double Input
Note: the dimension, dim, of the array x must be at least

max(1, pdx x m) when order = Nag_ColMajor;
max(1,n x pdx) when order = Nag_RowMajor.

Where X(i,7) appears in this document, it refers to the array element

x[(j — 1) x pdx + i — 1] when order = Nag_ColMajor;
x[(¢ — 1) x pdx + j — 1] when order = Nag_RowMajor.

On entry: the real matrix X, i.e., the independent variables. X(4,) must contain the ijth element
of x, fort=1,2,...,nand j=1,2,...,m.

6: pdx — Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the
array X.
Constraints:

if order = Nag_ColMajor, pdx > n;
if order = Nag_RowMajor, pdx > m.

7: am x (m+ 1)/2] — double Input/Output

On entry: an initial estimate of the lower triangular real matrix A. Only the lower triangular
elements must be given and these should be stored row-wise in the array.

The diagonal elements must be # 0, although in practice will usually be > 0. If the magnitudes
of the columns of X are of the same order the identity matrix will often provide a suitable initial
value for A. If the columns of X are of different magnitudes, the diagonal elements of the initial
value of A should be approximately inversely proportional to the magnitude of the columns of X.

On exit: the lower triangular elements of the matrix A, stored row-wise.

8: z[n] — double Output
On exit: the value |z;||,, for i=1,2,...,n
9: bl — double Input

On entry: the magnitude of the bound for the off-diagonal elements of Sj.

Mark 25 202hbc.3

g02hbc NAG Library Manual

10:

11:

12:

13:

14:

15:

16:

17:

6

Suggested value: bl = 0.9.
Constraint: bl > 0.0.

bd — double Input
On entry: the magnitude of the bound for the diagonal elements of Sy.

Suggested value: bd = 0.9.

Constraint: bd > 0.0.

tol — double Input

On entry: the relative precision for the final value of A. Iteration will stop when the maximum
value of |sﬂ| is less than tol.

Constraint: tol > 0.0.

maxit — Integer Input
On entry: the maximum number of iterations that will be used during the calculation of A.
A value of maxit = 50 will often be adequate.

Constraint: maxit > 0.

nitmon — Integer Input
On entry: determines the amount of information that is printed on each iteration.

nitmon > 0
The value of A and the maximum value of }sﬂ| will be printed at the first and every nitmon
iterations.

nitmon < 0
No iteration monitoring is printed.
outfile — const char * Input

On entry: a null terminated character string giving the name of the file to which results should be
printed. If outfile = NULL or an empty string then the stdout stream is used. Note that the file
will be opened in the append mode.

nit — Integer * Output

On exit: the number of iterations performed.

comm — Nag Comm *

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

g02hbc.4 Mark 25

202 — Correlation and Regression Analysis g02hbc

NE_CONVERGENCE

Iterations to calculate weights failed to converge in maxit iterations: maxit = (value).

NE_FUN_RET_VAL

Value returned by uev function < 0: u({value)) = (value).

NE_INT

On entry, maxit = (value).
Constraint: maxit > 0.

On entry, n = (value).
Constraint: n > 1.

On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2

On entry, m = (value) and n = (value).
Constraint: 1 <m < n.

On entry, pdx = (value) and m = (value).
Constraint: pdx > m.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_NOT_CLOSE_FILE

Cannot close file (value).

NE_NOT_WRITE_FILE

Cannot open file (value) for writing.

NE_REAL

On entry, bd = (value).
Constraint: bd > 0.0.

On entry, bl = (value).
Constraint: bl > 0.0.

On entry, tol = (value).
Constraint: tol > 0.0.

NE_ZERO_DIAGONAL

On entry, diagonal element (value) of a is 0.

7 Accuracy

On successful exit the accuracy of the results is related to the value of tol; see Section 5.

Mark 25 202hbc.5

g02hbc NAG Library Manual

8 Parallelism and Performance

nag_robust m_regsn wts (g02hbc) is not threaded by NAG in any implementation.

nag_robust m_regsn wts (g02hbc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The existence of A will depend upon the function u; (see Hampel et al. (1986) and Marazzi (1987)), also
if X is not of full rank a value of A will not be found. If the columns of X are almost linearly related
then convergence will be slow.

10 Example
This example reads in a matrix of real numbers and computes the Krasker—Welsch weights (see Marazzi

(1987)). The matrix A and the weights are then printed.

10.1 Program Text

/* nag_robust_m_regsn_wts (g02hbc) Example Program.

*

* Copyright 2014 Numerical Algorithms Group.
*

* Mark 7, 2002.

* Mark 7b revised, 2004.

*/

#include <math.h>
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg02.h>
#include <nags.h>
#include <nagx01l.h>
#include <nagx02.h>

#ifdef _ cplusplus

extern "C" {

#endif

static double NAG_CALL ucv(double t, Nag_Comm *comm) ;
#ifdef _ cplusplus

}

#endif

int main(void)

{
/* Scalars */
double bd, bl, tol;
Integer exit_status, i, j, k, 11, 12, m, maxit, mm, n, nit, nitmon;
Integer pdx;
NagError fail;
Nag_OrderType order;
Nag_Comm comm;

/* Arrays */
static double ruser[1l] = {-
double *a = 0, *x =

#ifdef NAG_COLUMN_MAJOR

g02hbc.6 Mark 25

202 — Correlation and Regression Analysis g02hbc

#define X(I, J) x[(J-1)*pdx + I - 1]
order = Nag_ColMajor;

#else

#define X(I, J) x[(I-1)*pdx + J - 1]
order = Nag_RowMajor;

#endif

INIT FAIL(fail);

exit_status = 0;
printf("nag_robust_m regsn_wts (g02hbc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("s*["\n] ");
#else

scanf ([*\n] ");
#endif

/* Read in the dimensions of X */
#ifdef _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[*\n] ", &n, &m);
#else
scanf ("$"NAG_IFMT"%"NAG_IFMT"%*["\n] ", &n, &m);
#endif
/* Allocate memory */
if (!(a = NAG_ALLOC(m*(m+1)/2, double)) ||
! (x = NAG_ALLOC(n * m, double)) ||
! (z = NAG_ALLOC(n, double)))

{
printf("Allocation failure\n")
exit_status = -1;
goto END;
}
#ifdef NAG_COLUMN_MAJOR
pdx = n;
#else
pdx = m;
#endif
/* Read in the X matrix */
for (i = 1; 1 <= n; ++1)
{

for (j = 1; j <= m; ++3j)
#ifdef _WIN32
scanf_s("$1f", &X(i, j));

#else
scanf ("$1f", &X(i, J));

#endif
#ifdef _WIN32

scanf_s([*\n] ");
#else

scanf ([*\n] ");
#endif

}

/* Read in the initial value of A */
mm = (m + 1) *m / 2;
for (j = 1; j <= mm; ++7)
#ifdef _WIN32
scanf_s("s1f", salj - 11);
#else
scanf ("s1f", &alj - 11);
#endif
#ifdef _WIN32
scanf_s("s*["\n] ");
#else
scanf ([*\n] ");

Mark 25 202hbc.7

g02hbc
#endif
/* Set the values remaining parameters */
bl = 0.9;
bd = 0.9;
maxit = 50;
tol = 5e-5;

}

NAG Library Manual

/* Change nitmon to a positive value if monitoring information

* is required
*/

nitmon = 0;

/* nag_robust_m_regsn_wts
* Robust regression,
* nag_robust_m_regsn_user_fn
*/

nag_robust_m_regsn_wts(order, ucv, n, m,

nitmon, O, &nit,
= NE_NOERROR)

(g02hbc) .

(g02hdc)

if (fail.code
{

printf ("Error from nag_robust_m_regsn_wts

fail.message) ;

exit_status = 1;
goto END;
}
printf(
"nag_robust_m_regsn_wts (g02hbc)
"converge\n\n", nit);
printf ("Matrix A\n");
12 = 0;
for (3 = 1; j <= m; ++3j)
{
11 = 12 + 1;
12 += j;
for (k = 11; k <= 12; ++k)
printf("%9.4f%s", alk - 1], k%6 ==
}
printf ("\n");
printf ("Vector zZ\n");
for (i = 1; i <= n; ++1)
printf ("%9.4f\n", z[i - 1]);

/* Calculate Krasker-Welsch weights */
printf ("\n");
printf ("Vector of weights\n");

for (i = 1; i <= n; ++1i)
{
z[i - 1] = 1.0 / z[i - 1];
printf ("%9.4f\n", z[i - 11);
}
END:

NAG_FREE (a) ;
NAG_FREE (x) ;
NAG_FREE (z) ;

return exit_status;

x, pdx,
&comm,

compute weights for use with

a, z, bl, bd, tol, maxit,

&fail) ;

(g02hbc) .\n%s\n",

required %4"NAG_IFMT" iterations to

|| k == lz?u\nu:u ll);

static double NAG_CALL ucv(double t, Nag_Comm *comm)

{

/* Scalars */
double pc, pd,
double ret_val;

d, 92;

/* ucv function for Krasker-Welsch weights */

if (comm->user[0] -1.0)

{
printf (" (User-supplied callback ucv,
comm->user [0] 0.0;

g02hbc.8

first invocation.)\n");

Mark 25

202 — Correlation and Regression Analysis g02hbc

}

ret_val

= 1.0;

if (t != 0.0)

{
q:
qz2

2.5 / t;
a* q;

/* nag_cumul_normal (sl5abc).
* Cumulative Normal distribution function P(x)

*/

pc

nag_cumul_normal(q) ;

/* nag_real_smallest_number (x02akc).
* The smallest positive model number

*/

if

(

g2 < -log(nag_real_smallest_number))

/* nag_pi (xOlaac).

*

p1

= exp(-g2 / 2.0) / sqrt(nag_pi * 2.0);

= 0.0

ret_val = (pc * 2.0 - 1.0) * (1.0 - g2) + g2 - g * 2.0 * pd;

return ret_val;

10.2 Program Data

nag_robust_m_regsn_wts (g02hbc) Example Program Data

5 3 N M
1.0 -1.0 -1.0 X1 X2 X3
1.0 -1.0 1.0
1.0 1.0 -1.0
1.0 1.0 1.0
1.0 0.0 3.0 End of X1 X2 and X3 values
1.0 0.0 1.0 0.0 0.0 1.0 : A

10.3 Program Results

nag_robust_m_regsn_wts (g02hbc) Example Program Results
(User-supplied callback ucv, first invocation.)
nag_robust_m _regsn_wts (g02hbc) required 16 iterations to converge

Matrix A
1.3208
0.0000

-0.5753

Vector 2
2.4760
.9953
.4760
.9953
.5890

NN

Vector of
.4039
.5012
.4039
.5012
.3862

[eNoNoNoNe)]

1.4518
0.0000 0.9340

weights

Mark 25

g02hbc.9 (last)

	g02hbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Hampel et al. (1986)
	Huber (1981)
	Marazzi (1987)

	5 Arguments
	order
	ucv
	t
	comm
	user
	iuser
	p

	n
	m
	x
	pdx
	a
	z
	bl
	bd
	tol
	maxit
	nitmon
	outfile
	nit
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CONVERGENCE
	NE_FUN_RET_VAL
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_NOT_CLOSE_FILE
	NE_NOT_WRITE_FILE
	NE_REAL
	NE_ZERO_DIAGONAL

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

