202 — Correlation and Regression Analysis g02eac

NAG Library Function Document
nag_all regsn (g02eac)

1 Purpose

nag_all regsn (g02eac) calculates the residual sums of squares for all possible linear regressions for a
given set of independent variables.

2 Specification

#include <nag.h>
#include <nagg02.h>

void nag_all_regsn (Nag_OrderType order, Nag_IncludeMean mean, Integer n,
Integer m, const double x[], Integer pdx, const char *var_names[],
const Integer sx[], const double y[], const double wt[], Integer *nmod,
const char *model[], double rss[], Integer nterms[], Integer mrankl[],
NagError *fail)

3 Description

For a set of k possible independent variables there are 2* linear regression models with from zero to k
independent variables in each model. For example if £ = 3 and the variables are A, B and C' then the
possible models are:

(i) null model

i) A
(i) B
iv) C
(vy Aand B
(vij Aand C

(vi)) B and C
(viii) A, B and C.

nag_all regsn (g02eac) calculates the residual sums of squares from each of the 2% possible models. The
method used involves a QR decomposition of the matrix of possible independent variables. Independent
variables are then moved into and out of the model by a series of Givens rotations and the residual sums
of squares computed for each model; see Clark (1981) and Smith and Bremner (1989).

The computed residual sums of squares are then ordered first by increasing number of terms in the
model, then by decreasing size of residual sums of squares. So the first model will always have the
largest residual sum of squares and the 2*th will always have the smallest. This aids you in selecting the
best possible model from the given set of independent variables.

nag_all regsn (g02eac) allows you to specify some independent variables that must be in the model, the
forced variables. The other independent variables from which the possible models are to be formed are
the free variables.

Mark 25 g02eac.1

g02eac NAG Library Manual

4

References

Clark M R B (1981) A Givens algorithm for moving from one linear model to another without going
back to the data Appl. Statist. 30 198-203

Smith D M and Bremner J M (1989) All possible subset regressions using the QR decomposition
Comput. Statist. Data Anal. 7 217-236

Weisberg S (1985) Applied Linear Regression Wiley

5

1:

Arguments

order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

mean — Nag IncludeMean Input
On entry: indicates if a mean term is to be included.

mean = Nag_MeanlInclude
A mean term, intercept, will be included in the model.

mean = Nag_MeanZero
The model will pass through the origin, zero-point.

Constraint: mean = Nag_MeanInclude or Nag_MeanZero.

n — Integer Input
On entry: n, the number of observations.
Constraints:
n>2;
n > m, is the number of independent variables to be considered (forced plus free plus mean
if included), as specified by mean and sx.
m — Integer Input
On entry: the number of variables contained in x.

Constraint: m > 2.

x[dim] — const double Input
Note: the dimension, dim, of the array x must be at least

max(1, pdx x m) when order = Nag_ColMajor;
max(1,n X pdx) when order = Nag_RowMajor.

Where X(i,j) appears in this document, it refers to the array element

x[(j — 1) x pdx + i — 1] when order = Nag_ColMajor;
x[(¢ — 1) x pdx + j — 1] when order = Nag_RowMajor.

On entry: X(i,j) must contain the ith observation for the jth independent variable, for
1=1,2,...,nand j=1,2,... m.
pdx — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array X.

g02eac.2 Mark 25

202 — Correlation and Regression Analysis g02eac

10:

11:

12:

Constraints:

if order = Nag_ColMajor, pdx > n;

if order = Nag_RowMajor, pdx > m.
var_names[m| — const char * Input
On entry: var_names|i — 1] must contain the name of the independent variable in row i of x, for
1=1,2,...,m.
sx[m] — const Integer Input
On entry: indicates which independent variables are to be considered in the model.

sx[j—1]>2
The variable contained in the jth column of X is included in all regression models, i.e., is a
forced variable.

sx[j—1] =1
The variable contained in the jth column of X is included in the set from which the
regression models are chosen, i.e., is a free variable.

sx[j—1] =0
The variable contained in the jth column of X is not included in the models.

Constraints:

sx[j—1] >0, for j=1,2,...,m;

at least one value of sx = 1.
y[n] — const double Input
On entry: y[i— 1] must contain the ith observation on the dependent variable, y;, for
1=1,2,...,n.
wt[n| — const double Input
On entry: optionally, the weights to be used in the weighted regression.

If wt[i — 1] = 0.0, then the ith observation is not included in the model, in which case the
effective number of observations is the number of observations with nonzero weights.

If weights are not provided then wt must be set to NULL and the effective number of
observations is n.

Constraint: if wt is not NULL, wt[i — 1] = 0.0, for i=1,2,...,n.

nmod — Integer * Output

On exit: the total number of models for which residual sums of squares have been calculated.

model[dim] — const char * Output

Note: the dimension, dim, of the array model must be at least big enough to hold the names of all
the free independent variables which appear in all the models. This will never exceed 2* x m,
where k is the number of free variables in the model.

On exit: the names of the independent variables in each model, represented as pointers to the
names provided by you in var_names. The model names are stored as follows:

if the first model has three names, i.e., nterms[0] = 3; then model[0], model[l] and
model[2] will contain these three names;

if the second model has two names, i.c., nterms[l] = 2; then model[3], model4] will
contain these two names.

Mark 25 g02eac.3

g02eac NAG Library Manual
13: rss[max (2", m)] — double Output

On exit: rss[i — 1] contains the residual sum of squares for the ith model, for i =1,2,..., nmod.
14 nterms[max (2", m)] — Integer Output

On exit: nterms[i — 1] contains the number of independent variables in the ith model, not

including the mean if one is fitted, for +=1,2,..., nmod.

15: mrank[max(2*, m)] — Integer

Output

On exit: mrank[i — 1] contains the rank of the residual sum of squares for the ith model.

16: fail — NagError *

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_FREE_VARS

There are no free x variables.

NE_FULL_RANK

Full model is not of full rank.

NE_INDEP_VARS_OBS

Number of requested z-variables > number of observations.

NE_INT

On entry, m = (value).
Constraint: m > 2.

On entry, n = (value).
Constraint: n > 2.

On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2

On entry, pdx = (value) and m = (value).
Constraint: pdx > m.

On entry, pdx = (value) and n = (value).
Constraint: pdx > n.

NE_INT ARRAY ELEM_CONS
On entry, sx[(value)] < 0.

g02eac.4

Input/Output

Mark 25

202 — Correlation and Regression Analysis g02eac

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
NE _NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.
NE_REAL_ARRAY_ELEM_CONS
On entry, wt[(value)] < 0.0.

7 Accuracy

For a discussion of the improved accuracy obtained by using a method based on the Q) R decomposition
see Smith and Bremner (1989).

8 Parallelism and Performance

nag_all regsn (g02eac) is threaded by NAG for parallel execution in multithreaded implementations of
the NAG Library.

nag_all regsn (g02eac) makes calls to BLAS and/or LAPACK routines, which may be threaded within
the vendor library used by this implementation. Consult the documentation for the vendor library for
further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

nag_cp_stat (g02ecc) may be used to compute R? and C,-values from the results of nag_all regsn
(g02eac).

If a mean has been included in the model and no variables are forced in then rss[0] contains the total
sum of squares and in many situations a reasonable estimate of the variance of the errors is given by
rss[nmod — 1]/(n — 1 — nterms[nmod — 1]).

10 Example

The data for this example is given in Weisberg (1985). The independent variables and the dependent
variable are read, as are the names of the variables. These names are as given in Weisberg (1985). The
residual sums of squares computed and printed with the names of the variables in the model.

10.1 Program Text
/* nag_all_regsn (g02eac) Example Program.
*

* Copyright 2014 Numerical Algorithms Group.
* Mark 7, 2002.
*/

#include <math.h>
#include <stdio.h>
#include <string.h>
#include <nag.h>

Mark 25 g02eac.5

g02eac NAG Library Manual

#include <nag_stdlib.h>
#include <nagg02.h>

int main(void)

{
/* Scalars */
Integer exit_status, free_vars, i, ii, j, m, n, nmod, pdx;
NagError fail;

Nag_OrderType order;

/* Arrays */

char **model = O;

const char *var_names[] = { "DAY", "BOD", "TKN", "TS", "TVS", "COD" };
double *rss = 0, *x = 0, *y = 0, *wtptr = 0;

Integer *sx = 0, *mrank = 0, *nterms = O;

/* For iteration over model */
Integer model_index = 0;

#ifdef NAG_COLUMN_MAJOR

#define X(I, J) x[(J-1)*pdx + I - 1]
order = Nag_ColMajor;

#else

#define X(I, J) x[(I-1)*pdx + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);

exit_status = 0;
printf("nag_all_regsn (g02eac) Example Program Results\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("s*["\n] ");
#else

scanf ("s*[*\n] ");
#endif

#ifdef _WIN32

scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[*\n] ", &n, &m);
#else

scanf ("$"NAG_IFMT"%"NAG_IFMT"%*["\n] ", &n, &m);
#endif

/* Allocate memory */
if (! (x = NAG_ALLOC(n * m, double)) ||
! (y = NAG_ALLOC(n, double)) |
)

)
|
! (sx = NAG_ALLOC(m, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

3

#ifdef NAG_COLUMN_MAJOR

pdx = n;

order = Nag_ColMajor;
#else

pdx = m;

order = Nag_RowMajor;
#endif

for (i = 1; i <= n; ++1i)
{
for (3 = 1; j <= m; ++3j)
#ifdef _WIN32
scanf_s("s1f", &X(i, J3));
#else
scanf ("s1f", &X(i, 3));

g02eac.6 Mark 25

202 — Correlation and Regression Analysis

#endif
#ifdef _WIN32
scanf_s("s1fs*[*\n] ", &yl[i - 1]);

#else
scanf ("$1f%*["\n] ", &yl[i - 11);
#endif
}
free_vars = 1;
for (3 = 1; j <= m; ++3j)
{

#ifdef _WIN32
scanf_s("$"NAG_IFMT"", &sx[j - 1]1);

#else
scanf ("$"NAG_IFMT"", &sx[j - 1]);
#endif
if (sx[j - 1] == 1)
{
free_vars <<= 1;
¥
}
#ifdef _WIN32
scanf_s("s*["\n] ");
#else
scanf (“\nl ");
#endif
if (! (model = NAG_ALLOC(free_vars*m, char *)) ||

¢)
! (rss = NAG_ALLOC(free_vars, double)) ||
! (mrank = NAG_ALLOC(free_vars, Integer)) ||
1(r)

nterms = NAG_ALLOC(free_vars, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* nag_all_regsn (g02eac).

* Computes residual sums of squares for all possible linear

* regressions for a set of independent variables

*/

nag_all_regsn(order, Nag_MeanInclude, n, m, x, pdx, var_names,

&nmod, (const char **)model, rss, nterms,
if (fail.code != NE_NOERROR)
{

printf ("Error from nag_all_regsn (g02eac).\n%s\n", fail.message) ;

exit_status = 1;
goto END;
}

printf ("\n")
printf ("Number of Rss Rank Model\n") ;
printf ("parameters\n");
for (i = 1; 1 <= nmod; ++1i)
{

ii = nterms([i - 1];

printf ("$8"NAG_IFMT"%11.4f%4"NAG_IFMT" ", ii, rss[i-1],

mrank[i-1]);
for (j = 1; j <= ii; ++3)
printf("%$-3.3s %s", model[model_index++],

385 == 0] J == 52"\n":" ");
printf ("\n")
b
END:
NAG_FREE (rss) ;
NAG_FREE (x) ;
NAG_FREE (y) ;
NAG_FREE (sx) ;
Mark 25

g02eac

wtptr,

g02eac.7

g02eac NAG Library Manual

NAG_FREE (mrank) ;
NAG_FREE (nterms) ;
NAG_FREE (model) ;
return exit_status;

10.2 Program Data

nag_all_regsn (gO02eac) Example Program Data

20 6
0. 1125.0 232.0 7160.0 85.9 8905.0 1.5563
7. 920.0 268.0 8804.0 86.5 7388.0 0.8976
15. 835.0 271.0 8108.0 85.2 5348.0 0.7482
22. 1000.0 237.0 ©6370.0 83.8 8056.0 0.7160
29. 1150.0 192.0 6441.0 82.1 6960.0 0.3010
37. 990.0 202.0 5154.0 79.2 5690.0 0.3617
44. 840.0 184.0 5896.0 81.2 6932.0 0.1139
58. 650.0 200.0 5336.0 80.6 5400.0 0.1139
65. 640.0 180.0 5041.0 78.4 3177.0 -0.2218
72. 583.0 165.0 5012.0 79.3 4461.0 -0.1549
80. 570.0 151.0 4825.0 78.7 3901.0 0.0000
86. 570.0 171.0 4391.0 78.0 5002.0 0.0000
93. 510.0 243.0 4320.0 72.3 4665.0 -0.0969
100. 555.0 147.0 3709.0 74.9 4642.0 -0.2218
107. 460.0 286.0 3969.0 74.4 4840.0 -0.3979
122. 275.0 198.0 3558.0 72.5 4479.0 -0.1549
129. 510.0 196.0 4361.0 57.7 4200.0 -0.2218
151. 165.0 210.0 3301.0 71.8 3410.0 -0.3979
171. 244.0 327.0 2964.0 72.5 3360.0 -0.5229
220. 79.0 334.0 2777.0 71.9 2599.0 -0.0458
0 1 1 1 1 1

10.3 Program Results

nag_all regsn (g02eac) Example Program Results

Number of Rss Rank Model
parameters

.0634 32

.0219 31 TKN

.5044 30 TVS

.0338 28 BOD

.5563 25 COD

.5370 24 TS

.4381 29 TKN TVS
.7462 27 BOD TVS
.5921 26 BOD TKN
.4963 23 BOD COD
.4707 22 TKN TS

.4590 21 TS TVS
.4397 20 BOD TS

.4388 19 TKN COD
.3287 15 TVS COD
.0850 8 TS COD
.4257 18 BOD TKN TVS
.3900 17 TKN TS TVS
.3894 1o BOD TS TVS
.3204 14 BOD TVS COD
.2764 13 BOD TKN COD
.2582 12 BOD TKN TS
.2179 10 TKN TVS COD
.0644 7 BOD TS COD
.0634 6 TS TVS COD
.9871 4 TKN TS COD
.2199 11 BOD TKN TS TVS
.1565 9 BOD TKN TVS COD

BRWWWWWWWWWWNNNNNNNNNNNRRRRE RO
FRPORRPRRPERRPRERPERPERERRERERPERENDRERNDNDOWO

g02eac.8 Mark 25

202 — Correlation and Regression Analysis

g02eac

4 1.0388 5 BOD TS TVS COD
4 0.9871 3 BOD TKN TS COD
4 0.9653 2 TKN TS TVS COD
5 0.9652 1 BOD TKN TS TVS COD
Mark 25 g02eac.9 (last)

	g02eac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Clark (1981)
	Smith and Bremner (1989)
	Weisberg (1985)

	5 Arguments
	order
	mean
	n
	m
	x
	pdx
	var_names
	sx
	y
	wt
	nmod
	model
	rss
	nterms
	mrank
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_FREE_VARS
	NE_FULL_RANK
	NE_INDEP_VARS_OBS
	NE_INT
	NE_INT_2
	NE_INT_ARRAY_ELEM_CONS
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_REAL_ARRAY_ELEM_CONS

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

