
NAG Library Function Document

nag_sum_sqs_combine (g02bzc)

1 Purpose

nag_sum_sqs_combine (g02bzc) combines two sets of sample means and sums of squares and cross-
products matrices. It is designed to be used in conjunction with nag_sum_sqs (g02buc) to allow large
datasets to be summarised.

2 Specification

#include <nag.h>
#include <nagg02.h>

void nag_sum_sqs_combine (Nag_SumSquare mean, Integer m, double *xsw,
double xmean[], double xc[], double ysw, const double ymean[],
const double yc[], NagError *fail)

3 Description

Let X and Y denote two sets of data, each with m variables and nx and ny observations respectively. Let
�x denote the (optionally weighted) vector of m means for the first dataset and Cx denote either the
sums of squares and cross-products of deviations from �x

Cx ¼ X � e�T
x

� �T
Dx X � e�T

x

� �
or the sums of squares and cross-products, in which case

Cx ¼ XTDxX

where e is a vector of nx ones and Dx is a diagonal matrix of (optional) weights and Wx is defined as
the sum of the diagonal elements of D. Similarly, let �y, Cy and Wy denote the same quantities for the
second dataset.

Given �x; �y; Cx; Cy;Wx and Wy nag_sum_sqs_combine (g02bzc) calculates �z, Cz and Wz as if a
dataset Z, with m variables and nx þ ny observations were supplied to nag_sum_sqs (g02buc), with Z
constructed as

Z ¼ X
Y

� �
:

nag_sum_sqs_combine (g02bzc) has been designed to combine the results from two calls to
nag_sum_sqs (g02buc) allowing large datasets, or cases where all the data is not available at the
same time, to be summarised.

4 References

Bennett J, Pebay P, Roe D and Thompson D (2009) Numerically stable, single-pass, parallel statistics
algorithms Proceedings of IEEE International Conference on Cluster Computing

g02 – Correlation and Regression Analysis g02bzc

Mark 25 g02bzc.1

5 Arguments

1: mean – Nag_SumSquare Input

On entry: indicates whether the matrices supplied in xc and yc are sums of squares and cross-
products, or sums of squares and cross-products of deviations about the mean.

mean ¼ Nag AboutMean
Sums of squares and cross-products of deviations about the mean have been supplied.

mean ¼ Nag AboutZero
Sums of squares and cross-products have been supplied.

Constraint: mean ¼ Nag AboutMean or Nag AboutZero.

2: m – Integer Input

On entry: m, the number of variables.

Constraint: m � 1.

3: xsw – double * Input/Output

On entry: Wx, the sum of weights, from the first set of data, X. If the data is unweighted then this
will be the number of observations in the first dataset.

On exit: Wz, the sum of weights, from the combined dataset, Z. If both datasets are unweighted
then this will be the number of observations in the combined dataset.

Constraint: xsw � 0.

4: xmean½m� – double Input/Output

On entry: �x, the sample means for the first set of data, X.

On exit: �z, the sample means for the combined data, Z.

5: xc½ m�mþmð Þ=2� – double Input/Output

On entry: Cx, the sums of squares and cross-products matrix for the first set of data, X, as
returned by nag_sum_sqs (g02buc).

nag_sum_sqs (g02buc), returns this matrix packed by columns, i.e., the cross-product between the
jth and kth variable, k � j, is stored in xc½k� k� 1ð Þ=2þ j� 1�.
No check is made that Cx is a valid cross-products matrix.

On exit: Cz, the sums of squares and cross-products matrix for the combined dataset, Z.

This matrix is again stored packed by columns.

6: ysw – double Input

On entry: Wy, the sum of weights, from the second set of data, Y . If the data is unweighted then
this will be the number of observations in the second dataset.

Constraint: ysw � 0.

7: ymean½m� – const double Input

On entry: �y, the sample means for the second set of data, Y .

8: yc½ m�mþmð Þ=2� – const double Input

On entry: Cy, the sums of squares and cross-products matrix for the second set of data, Y , as
returned by nag_sum_sqs (g02buc).

nag_sum_sqs (g02buc), returns this matrix packed by columns, i.e., the cross-product between the
jth and kth variable, k � j, is stored in yc½k� k� 1ð Þ=2þ j� 1�.

g02bzc NAG Library Manual

g02bzc.2 Mark 25

No check is made that Cy is a valid cross-products matrix.

9: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, m ¼ valueh i.
Constraint: m � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL

On entry, xsw ¼ valueh i.
Constraint: xsw � 0:0.

On entry, ysw ¼ valueh i.
Constraint: ysw � 0:0.

7 Accuracy

Not applicable.

8 Parallelism and Performance

nag_sum_sqs_combine (g02bzc) is not threaded by NAG in any implementation.

nag_sum_sqs_combine (g02bzc) makes calls to BLAS and/or LAPACK routines, which may be threaded
within the vendor library used by this implementation. Consult the documentation for the vendor library
for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

g02 – Correlation and Regression Analysis g02bzc

Mark 25 g02bzc.3

10 Example

This example illustrates the use of nag_sum_sqs_combine (g02bzc) by dividing a dataset into three
blocks of 4, 5 and 3 observations respectively. Each block of data is summarised using nag_sum_sqs
(g02buc) and then the three summaries combined using nag_sum_sqs_combine (g02bzc).

The resulting sums of squares and cross-products matrix is then scaled to obtain the covariance matrix
for the whole dataset.

10.1 Program Text

/* nag_sum_sqs_combine (g02bzc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 24, 2013.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg02.h>
#include <nagx04.h>

#define X(I,J) x[(order == Nag_ColMajor) ? (J)*pdx + (I) : (I)*pdx + (J)]

int main(void)
{

/* Integer scalar and array declarations */
Integer b, i, j, ierr, lc, pdx, m, n, iwt;
Integer exit_status = 0;

/* NAG structures and types */
NagError fail;
Nag_SumSquare mean;
Nag_OrderType order = Nag_ColMajor;

/* Double scalar and array declarations */
double alpha, xsw, ysw;
double *wt = 0, *x = 0, *xc = 0, *xmean = 0, *yc = 0, *ymean = 0;

/* Character scalar and array declarations */
char cmean[40];

/* Initialise the error structure */
INIT_FAIL(fail);

printf("nag_sum_sqs_combine (g02bzc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Read in the problem defining variables */
#ifdef _WIN32

scanf_s("%39s%"NAG_IFMT"%*[^\n] ",cmean, _countof(cmean),&m);
#else

scanf("%39s%"NAG_IFMT"%*[^\n] ",cmean,&m);
#endif

mean = (Nag_SumSquare) nag_enum_name_to_value(cmean);

/* Allocate memory for output arrays */
lc = (m*m+m)/2;
if (!(xmean = NAG_ALLOC(m, double)) ||

!(ymean = NAG_ALLOC(m, double)) ||
!(xc = NAG_ALLOC(lc, double)) ||

g02bzc NAG Library Manual

g02bzc.4 Mark 25

!(yc = NAG_ALLOC(lc, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Loop over each block of data */
for (b = 0;;)

{
/* Read in the number of observations in this block and a flag indicating
* whether weights have been supplied (iwt = 1) or not (iwt = 0).
*/

#ifdef _WIN32
ierr = scanf_s("%"NAG_IFMT"%"NAG_IFMT"",&n,&iwt);

#else
ierr = scanf("%"NAG_IFMT"%"NAG_IFMT"",&n,&iwt);

#endif

if (ierr == EOF || ierr < 2) break;
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Keep a running total of the number of blocks of data */
b++;

/* Reallocate X to the required size */
NAG_FREE(x);
pdx = n;
if (!(x = NAG_ALLOC(pdx*m, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read in the data for this block */
if (iwt) {

/* Weights supplied, so reallocate X to the required size */
NAG_FREE(wt);
if (!(wt = NAG_ALLOC(n, double))) {

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
for (i = 0; i < n; i++) {

for (j = 0; j < m; j++)
#ifdef _WIN32

scanf_s("%lf",&X(i,j));
#else

scanf("%lf",&X(i,j));
#endif
#ifdef _WIN32

scanf_s("%lf",&wt[i]);
#else

scanf("%lf",&wt[i]);
#endif

}
} else {

/* No weights */
NAG_FREE(wt);
wt = 0;

for (i = 0; i < n; i++)
for (j = 0; j < m; j++)

#ifdef _WIN32
scanf_s("%lf",&X(i,j));

#else

g02 – Correlation and Regression Analysis g02bzc

Mark 25 g02bzc.5

scanf("%lf",&X(i,j));
#endif

}
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Call nag_sum_sqs (g02buc) to summarise this block of data */
if (b == 1) {

/* This is the first block of data, so summarise the data into
* xmean and xc.
*/

nag_sum_sqs(order,mean,n,m,x,pdx,wt,&xsw,xmean,xc,&fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_sum_sqs (g02buc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
} else {

/* This is not the first block of data, so summarise the data into
* ymean and yc.
*/

nag_sum_sqs(order,mean,n,m,x,pdx,wt,&ysw,ymean,yc,&fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_sum_sqs (g02buc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Call nag_sum_sqs_combine (g02bzc) to update the running summaries */
nag_sum_sqs_combine(mean,m,&xsw,xmean,xc,ysw,ymean,yc,&fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_sum_sqs_combine (g02bzc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
}

}

/* Display results */
printf(" Means\n ");
for (i = 0; i < m; i++)

printf("%14.4f",xmean[i]);
printf("\n\n");
fflush(stdout);

/* Call nag_pack_real_mat_print (x04ccc) to print the sums of squares */
nag_pack_real_mat_print(Nag_ColMajor,Nag_Upper,Nag_NonUnitDiag, m, xc,

"Sums of squares and cross-products", NULL, &fail);

if (xsw>1.0 && mean==Nag_AboutMean && fail.code == NE_NOERROR) {
/* Convert the sums of squares and cross-products to a

covariance matrix */
alpha = 1.0/(xsw-1.0);
for (i = 0; i < lc; i++)

xc[i] *= alpha;

printf("\n");
fflush(stdout);
nag_pack_real_mat_print(Nag_ColMajor,Nag_Upper,Nag_NonUnitDiag, m, xc,

"Covariance matrix", NULL, &fail);
}
if (fail.code != NE_NOERROR) {

printf("Error from nag_pack_real_mat_print (x04ccc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

g02bzc NAG Library Manual

g02bzc.6 Mark 25

END:
NAG_FREE(x);
NAG_FREE(wt);
NAG_FREE(xc);
NAG_FREE(xmean);
NAG_FREE(yc);
NAG_FREE(ymean);

return(exit_status);
}

10.2 Program Data

nag_sum_sqs_combine (g02bzc) Example Program Data
Nag_AboutMean 5 :: mean,m
4 0 :: n,iwt (1st block)
-1.10 4.06 -0.95 8.53 10.41
1.63 -3.22 -1.15 -1.30 3.78

-2.23 -8.19 -3.50 4.31 -1.11
0.92 0.33 -1.60 5.80 -1.15 :: End of X for 1st block

5 1 :: n,iwt (2nd block)
2.12 5.00 -11.69 -1.22 2.86 2.00
4.82 -7.23 -4.67 0.83 3.46 0.89

-0.51 -1.12 -1.76 1.45 0.26 0.32
-4.32 4.89 1.34 -1.12 -2.49 4.19
0.02 -0.74 0.94 -0.99 -2.61 4.33 :: End of X,WT for 2nd block

3 0 :: n,iwt (3rd block)
1.37 0.00 -0.53 -7.98 3.32
4.15 -2.81 -4.09 -7.96 -2.13

13.09 -1.43 5.16 -1.83 1.58 :: End of X for 3rd block

10.3 Program Results

nag_sum_sqs_combine (g02bzc) Example Program Results

Means
0.4369 0.4929 -1.3387 -0.5684 0.0987

Sums of squares and cross-products
1 2 3 4 5

1 304.5052 -123.7700 -27.1830 -60.7092 83.4830
2 298.9148 -17.3196 -2.1710 5.2072
3 332.1639 -3.9445 -96.9299
4 264.7684 79.6211
5 225.5948

Covariance matrix
1 2 3 4 5

1 17.1746 -6.9808 -1.5332 -3.4241 4.7086
2 16.8593 -0.9769 -0.1224 0.2937
3 18.7346 -0.2225 -5.4670
4 14.9334 4.4908
5 12.7239

g02 – Correlation and Regression Analysis g02bzc

Mark 25 g02bzc.7 (last)

	g02bzc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Bennett et al. (2009)

	5 Arguments
	mean
	m
	xsw
	xmean
	xc
	ysw
	ymean
	yc
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_REAL

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

