f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ylc

NAG Library Function Document
nag_dtgsna (f08ylc)

1 Purpose

nag dtgsna (fO8ylc) estimates condition numbers for specified eigenvalues and/or eigenvectors of a
matrix pair in generalized real Schur form.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dtgsna (Nag_OrderType order, Nag_JobType job,
Nag_HowManyType howmny, const Nag_Boolean select[], Integer n,
const double al], Integer pda, const double b[], Integer pdb,
const double v1[], Integer pdvl, const double vr[], Integer pdvr,
double s[], double dif[], Integer mm, Integer *m, NagError *fail)

3 Description

nag_dtgsna (f08ylc) estimates condition numbers for specified eigenvalues and/or right eigenvectors of
an n by n matrix pair (S,7T) in real generalized Schur form. The function actually returns estimates of
the reciprocals of the condition numbers in order to avoid possible overflow.

The pair (S,T) are in real generalized Schur form if S is block upper triangular with 1 by 1 and 2 by 2
diagonal blocks and 7' is upper triangular as returned, for example, by nag dgges (f08xac) or
nag dggesx (f08xbc), or nag_dhgeqz (f08xec) with job = Nag_Schur. The diagonal elements, or blocks,

define the generalized eigenvalues («;, 3;), for i = 1,2,...,n, of the pair (S,7) and the eigenvalues are
given by

Ai = ai/ B,
so that

G;Sx; = a;Tx; or Sx; = NTx;,
where z; is the corresponding (right) eigenvector.
If S and T are the result of a generalized Schur factorization of a matrix pair (A, B)
A=QSzZ", B=QTZ"
then the eigenvalues and condition numbers of the pair (S,7) are the same as those of the pair (A, B).

Let (o, 3) # (0,0) be a simple generalized eigenvalue of (A, B). Then the reciprocal of the condition
number of the eigenvalue A = /(3 is defined as

1/2
(1" Azf + |y Baf)
s(A) =)
(I l1yll,)
where x and y are the right and left eigenvectors of (A, B) corresponding to A. If both « and (3 are zero,
then (A, B) is singular and s(\) = —1 is returned.

The definition of the reciprocal of the estimated condition number of the right eigenvector = and the left
eigenvector y corresponding to the simple eigenvalue A depends upon whether A is a real eigenvalue, or
one of a complex conjugate pair.

Mark 25 f08ylc.1

f08ylc NAG Library Manual

If the eigenvalue A is real and U and V are orthogonal transformations such that

UT(A,B)V:(S’T):<3 Szz><g 722)

where S5, and T3, are (n — 1) by (n — 1) matrices, then the reciprocal condition number is given by
Dif (z) = Dif(y) = Dif((«v,), (S22, 122)) = omin (£),

where omin (Z) denotes the smallest singular value of the 2(n — 1) by 2(n — 1) matrix

7 — a®@l -1 5»
bR —1®Th

and ® is the Kronecker product.

If A is part of a complex conjugate pair and U and V are orthogonal transformations such that

T _ _ Sll * Tll *
U(A)B)V_(SaT)_< 0 SZZ)(0 Tzz)’

where S); and 7}, are two by two matrices, Sy, and T, are (n — 2) by (n — 2) matrices, and (S, 711)
corresponds to the complex conjugate eigenvalue pair A, A, then there exist unitary matrices U; and V)
such that

s () e vrn ()

The eigenvalues are given by A = s;1/t1; and A= sx» /t22. Then the Frobenius norm-based, estimated
reciprocal condition number is bounded by

Dif (z) = Dif(y) < min(d;, max(1,|Re(s;1)/Re(s22)]), d2)

where Re(z) denotes the real part of z, d; = Dif((s11,t11), (S22, t22)) = Omin (Z1), Z1 is the complex two

by two matrix
7z, — [St —s22 7
! (tll —t2
and d, is an upper bound on Dif((S11,711), (S22,722)); i.e., an upper bound on o, (Z2), where Z; is

the (2n —2) by (2n — 2) matrix
_(SEeI —I®S»
2 = <TE®I —1®Ty)

See Sections 2.4.8 and 4.11 of Anderson ef al. (1999) and Kégstrom and Poromaa (1996) for further
details and information.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Kéagstrom B and Poromaa P (1996) LAPACK-style algorithms and software for solving the generalized
Sylvester equation and estimating the separation between regular matrix pairs ACM Trans. Math.
Software 22 78—103

S Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by

f08ylc.2 Mark 25

http://www.netlib.org/lapack/lug

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ylc

order = Nag_ RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint. order = Nag_RowMajor or Nag_ColMajor.

2: job — Nag JobType Input
On entry: indicates whether condition numbers are required for eigenvalues and/or eigenvectors.

job = Nag_EigVals
Condition numbers for eigenvalues only are computed.

job = Nag_EigVecs
Condition numbers for eigenvectors only are computed.

job = Nag _DoBoth
Condition numbers for both eigenvalues and eigenvectors are computed.

Constraint: job = Nag_EigVals, Nag_EigVecs or Nag_DoBoth.

3: howmny — Nag HowManyType Input
On entry: indicates how many condition numbers are to be computed.

howmny = Nag_ComputeAll
Condition numbers for all eigenpairs are computed.

howmny = Nag_ComputeSelected
Condition numbers for selected eigenpairs (as specified by select) are computed.

Constraint: howmny = Nag_ComputeAll or Nag_ComputeSelected.

4: select[dim| — const Nag Boolean Input
Note: the dimension, dim, of the array select must be at least

n when howmny = Nag_ComputeSelected;
otherwise select may be NULL.

On entry: specifies the eigenpairs for which condition numbers are to be computed if
howmny = Nag_ComputeSelected. To select condition numbers for the eigenpair corresponding
to the real eigenvalue);, select[j — 1] must be set Nag TRUE. To select condition numbers
corresponding to a complex conjugate pair of eigenvalues \; and A, select[j — 1] and/or
select]j] must be set to Nag TRUE.

If howmny = Nag_ComputeAll, select is not referenced and may be NULL.

5: n — Integer Input
On entry: n, the order of the matrix pair (S, 7).

Constraint: n > 0.

6: a[dim] — const double Input
Note: the dimension, dim, of the array a must be at least pda x n.
The (4, j)th element of the matrix A is stored in

a[(j— 1) x pda + i — 1] when order = Nag_ColMajor;
a[(i — 1) x pda + j — 1] when order = Nag_RowMajor.

On entry: the upper quasi-triangular matrix S.

Mark 25 f08ylc.3

f08ylc NAG Library Manual

7: pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.

Constraint: pda > max(1,n).

8: b[dim] — const double Input
Note: the dimension, dim, of the array b must be at least pdb x n.
The (7, j)th element of the matrix B is stored in

b[(j — 1) x pdb + i — 1] when order = Nag_ColMajor;
b[(i — 1) x pdb + j — 1] when order = Nag_RowMajor.

On entry: the upper triangular matrix 7.

9: pdb — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array b.

Constraint: pdb > max(1,n).

10: vl[dim] — const double Input
Note: the dimension, dim, of the array vl must be at least

pdvl x mm when job = Nag_FEigVals or Nag_DoBoth and order = Nag_ColMajor;
n x pdvl when job = Nag_EigVals or Nag_DoBoth and order = Nag_RowMajor;
otherwise vl may be NULL.

The (i, j)th element of the matrix is stored in

vl[(j — 1) x pdvl + i — 1] when order = Nag_ColMajor;
vl[(i — 1) x pdvl + j — 1] when order = Nag_RowMajor.

On entry: if job = Nag_ EigVals or Nag_DoBoth, vl must contain left eigenvectors of (S,7T),
corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored
in consecutive columns of vl, as returned by nag dggev (f08wac) or nag_ dtgevc (f08ykc).

If job = Nag EigVecs, vl is not referenced and may be NULL.

11: pdvl — Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the
array vl.
Constraints:

if order = Nag_ColMajor,

if job = Nag_EigVals or Nag_DoBoth, pdvl > n;
otherwise pdvl > 1.;
if order = Nag_RowMajor,

if job = Nag_FEigVals or Nag_DoBoth, pdvl > mm;
otherwise vl may be NULL..
12: vr[dim] — const double Input
Note: the dimension, dim, of the array vr must be at least

pdvr x mm when job = Nag EigVals or Nag_DoBoth and order = Nag_ColMajor;
n x pdvr when job = Nag_EigVals or Nag_DoBoth and order = Nag_RowMajor;
otherwise vr may be NULL.

f08ylc.4 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ylc

13:

14:

16:

The (4, j)th element of the matrix is stored in

vr[(j — 1) x pdvr + i — 1] when order = Nag_ColMajor;
vr[(i — 1) x pdvr + j — 1] when order = Nag_RowMajor.

On entry: if job = Nag_EigVals or Nag_DoBoth, vr must contain right eigenvectors of (S,7T),
corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored
in consecutive columns of vr, as returned by nag dggev (f08wac) or nag_dtgevc (f08yke).

If job = Nag_EigVecs, vr is not referenced and may be NULL.

pdvr — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array vr.

Constraints:
if order = Nag_ColMajor,

if job = Nag_EigVals or Nag_DoBoth, pdvr > n;
otherwise pdvr > 1.;
if order = Nag_RowMajor,

if job = Nag_EigVals or Nag_DoBoth, pdvr > mm;

otherwise vr may be NULL..
s[dim] — double Output
Note: the dimension, dim, of the array s must be at least

mm when job = Nag EigVals or Nag_DoBoth;
otherwise s may be NULL.

On exit: if job = Nag_EigVals or Nag_DoBoth, the reciprocal condition numbers of the selected
eigenvalues, stored in consecutive elements of the array. For a complex conjugate pair of
eigenvalues two consecutive elements of s are set to the same value. Thus s[j — 1], dif[j — 1], and
the jth columns of VL and VR all correspond to the same eigenpair (but not in general the jth
eigenpair, unless all eigenpairs are selected).

If job = Nag_EigVecs, s is not referenced and may be NULL.

dif[dim] — double Output
Note: the dimension, dim, of the array dif must be at least

mm when job = Nag_FigVecs or Nag_DoBoth;
otherwise dif may be NULL.

On exit: if job = Nag_EigVecs or Nag_DoBoth, the estimated reciprocal condition numbers of the
selected eigenvectors, stored in consecutive elements of the array. For a complex eigenvector two
consecutive elements of dif are set to the same value. If the eigenvalues cannot be reordered to
compute dif[j — 1], dif[j — 1] is set to 0; this can only occur when the true value would be very
small anyway.

If job = Nag_EigVals, dif is not referenced and may be NULL.

mm — Integer Input
On entry: the number of elements in the arrays s and dif.
Constraints:

if howmny = Nag_ComputeAll, mm > n;
otherwise mm > m.

Mark 25 f08ylc.5

f08ylc NAG Library Manual

172 m — Integer * Output
On exit: the number of elements of the arrays s and dif used to store the specified condition
numbers; for each selected real eigenvalue one element is used, and for each selected complex
conjugate pair of eigenvalues, two elements are used. If howmny = Nag_ComputeAll, m is set to
n.

18: fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.
NE_BAD PARAM

On entry, argument (va/ue) had an illegal value.

NE_ENUM_INT 2

On entry, job = (value), pdvl = (value), mm = (value).
Constraint: if job = Nag_EigVals or Nag_DoBoth, pdvl > mm.

On entry, job = (value), pdvl = (value) and n = (value).
Constraint: if job = Nag_EigVals or Nag_DoBoth, pdvl > n.

On entry, job = (value), pdvr = (value), mm = (value).
Constraint: if job = Nag_EigVals or Nag_DoBoth, pdvr > mm.

On entry, job = (value), pdvr = (value) and n = (value).
Constraint: if job = Nag_EigVals or Nag_DoBoth, pdvr > n.
NE_ENUM_INT 3
On entry, howmny = (value), n = (value), mm = (value) and m = (value).
Constraint: if howmny = Nag_ComputeAll, mm > n;
otherwise mm > m.
NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdvl = (value).
Constraint: pdvl > 0.

On entry, pdvr = (value).
Constraint: pdvr > 0.
NE_INT 2

On entry, pda = (value) and n = (value).
Constraint: pda > max(1,n).

On entry, pdb = (value) and n = (value).
Constraint: pdb > max(1,n).

f08ylc.6 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ylc

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

None.

8 Parallelism and Performance

nag_dtgsna (f08ylc) is not threaded by NAG in any implementation.

nag_dtgsna (f08ylc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

An approximate asymptotic error bound on the chordal distance between the computed eigenvalue X and
the corresponding exact eigenvalue A is

X(A,A) < ell (A, B)l/S()
where € is the machine precision.

An approximate asymptotic error bound for the right or left computed eigenvectors & or g corresponding
to the right and left eigenvectors x and y is given by

0(z, z) < €||(A, B)||/Dif.

The complex analogue of this function is nag ztgsna (fO8yyc).

10 Example

This example estimates condition numbers and approximate error estimates for all the eigenvalues and
eigenvalues and right eigenvectors of the pair (S,7) given by

40 1.0 1.0 2.0 20 1.0 1.0 3.0
o 30 —-1.0 1.0 o 10 00 1.0
=10 10 30 10 and T=17 0" 10 10

0 0 0 6.0 0 0 0 20

The eigenvalues and eigenvectors are computed by calling nag_dtgevc (fO8ykc).

Mark 25 f08ylc.7

f08ylc NAG Library Manual

10.1 Program Text
/* nag_dtgsna (f08ylc) Example Program.
*

* Copyright 2014 Numerical Algorithms Group.
*
* Mark 23, 2011.

*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagx02.h>
#include <nagf08.h>
#include <nagfl6.h>

int main(void)

{
/* Scalars */
double eps, snorm, stnrm, tnorm, tol;
Integer i, j, m, n, pds, pdt, pdvl, pdvr;
Integer exit_status = 0;

/* Arrays */
double *dif = 0, *s = 0, *scon = 0, *t = 0, *vl = 0, *vr = 0;

/* Nag Types */
NagError fail;
Nag_OrderType order;

#ifdef NAG_COLUMN_MAJOR

#define S(I, J) s[(J-1)*pds + I - 1]

#define T(I, J) t[(J-1)*pdt + I - 1]
order = Nag_ColMajor;

#else

#define S(I, J) s[(I-1)*pds + J - 1]

#define T(I, J) t[(I-1)*pdt + J - 1]
order = Nag_RowMajor;

#endif

INIT_FATIL(fail);
printf("nag_dtgsna (£08ylc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32
scanf_s("s*["\nl");
#else
scanf ("s*[*\nl");
#endif
#ifdef _WIN32
scanf_s("%"NAG_IFMT"%*["\nl", &n);
#else
scanf ("$"NAG_IFMT"%*[*\n]", &n);
#endif
if (n < 0)
{
printf("Invalid n\n");
exit_status = 1;
goto END;

Il -~

m n;

pds = n;
pdt = n;
pdvl n;
pdvr = n;

/* Allocate memory */
if (! (dif = NAG_ALLOC(n, double)) ||
! (scon = NAG_ALLOC(n, double)) ||

f08ylc.8 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ylc

1 (s = NAG_ALLOC (n*n, double)) ||
(t = NAG_ALLOC(n*n, double)) ||
(vl = NAG_ALLOC (n*m, double)) ||
' (vr = NAG_ALLOC(n*m, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read S and T from data file */
for (i = 1; 1 <= n; ++1)
#ifdef _WIN32
for (j = 1; j <= n; ++3j) scanf_s("s1f", &S(i, j));
#else
for (j = 1; j <= n; ++3j) scanf("$1lf", &S(i, j));
#endif
#ifdef _WIN32
scanf_s("s*["\nl");
#else
scanf ([*\n]"
#endif
for (i = 1; 1 <= n; ++1)
#ifdef _WIN32
for (j = 1; j <= n; ++3j) scanf_s("%s1f", &T(i, J));
#else
for (j = 1; j <= n; ++j) scanf("%1f", &T(i, j));
#endif
#ifdef _WIN32
scanf_s("s*["\n]"
#else
scanf (["\n]"
#endif

/* Calculate the left and right generalized eigenvectors of the
* matrix pair (S,T) using nag_dtgevc (£08ykc).
* NULL may be passed here in place of the select array since all
* eigenvectors are requested.
*
/
nag_dtgevc (order, Nag_BothSides, Nag_ComputeAll, NULL, n, s, pds, t, pdt,
vl, pdvl, vr, pdvr, n, &m, &fail);

if (fail.code != NE_NOERROR)
{
printf ("Error from nag_dtgevc (f08ykc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Estimate condition numbers for all the generalized eigenvalues and right
* eigenvectors of the pair (S,T) using nag_dtgsna (£08ylc).
* NULL may be passed here in place of the select array since all
* eigenvectors are requested.
*
/
nag_dtgsna(order, Nag_DoBoth, Nag_ComputeAll, NULL, n, s, pds, t, pdt,
vl, pdvl, vr, pdvr, scon, dif, n, &m, &fail);

if (fail.code != NE_NOERROR)
{
printf ("Error from nag_dtgsna (f08ylc).\n%s\n", fail.message);
exit_status = 1;
goto END;
3

/* Print condition numbers of eigenvalues and right eigenvectors */
printf(Condition numbers of eigenvalues (scon) and right eigenvectors

(diff) ,\n")
printf("scon: ");
for (i = 0; i < m; ++1i)
printf (" %10.1e%s", scon[i], i%7 == 6?"\n Lty
printf ("\ndif: ") ;
for (i = 0; 1 < m; ++1)
printf (" %10.le%s", dif[i], i%7 == 6?"\n "Lt

Mark 25 f08ylc.9

f08ylc NAG Library Manual

/* Compute the norm of (S,T) using nag_dge_norm (flérac). */
eps = nag_machine_precision;
nag_dge_norm(order, Nag_OneNorm, n, n, s, pds, &snorm, &fail);
nag_dge_norm(order, Nag_OneNorm, n, n, t, pdt, &tnorm, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_dge_norm (flé6rac).\n%s\n", fail.message) ;
exit_status = 1;
goto END;
}

if (snorm == 0.0)
stnrm = ABS(tnorm) ;
else if (tnorm == 0.0)
stnrm = ABS(snorm);

(A

else if S(snorm) >= ABS(tnorm))
stnrm ABS(snorm)*sqrt(1.0+(tnorm/snorm)*(tnorm/snorm));
else

stnrm = ABS(tnorm)*sqgrt(1l.0+(snorm/tnorm)* (snorm/tnorm)) ;

/* Calculate approximate error estimates */
tol = eps*stnrm;

printf ("\n\nError estimates for eigenvalues (errval) and right eigenvectors"
" (errxvec),\n")

printf("errval: ");
for (i = 0; 1 < m; ++1)
printf(" %10.le%s", tol/sconl[i], i%7 == 6?"\n PRI
printf ("\nerrvec: ");
for (1 = 0; 1 < m; ++1)
printf (" %10.1le%s", tol/dif[i]l, i%7 == 6?"\n Moy,
END:
NAG_FREE (dif) ;
NAG_FREE (scon) ;
NAG_FREE(s) ;
NAG_FREE (t) ;
NAG_FREE (v1) ;
NAG_FREE (vr) ;

return exit_status;

10.2 Program Data

nag_dtgsna (f08ylc) Example Program Data

4 :n

4.0 1.0 1.0 2.0

0.0 3.0 -1.0 1.0

0.0 1.0 3.0 1.0

0.0 0.0 0.0 6.0 matrix S
2.0 1.0 1.0 3.0

0.0 1.0 0.0 1.0

0.0 0.0 1.0 1.0

0.0 0.0 0.0 2.0 matrix T

f08ylc.10 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ylc

10.3 Program Results

nag_dtgsna (f08ylc) Example Program Results

Condition numbers of eigenvalues (scon) and right eigenvectors (diff),
scon: 1.6e+00 1.7e+00 1.7e+00 1.4e+00
dif: 5.4e-01 1.5e-01 1.5e-01 1.2e-01

Error estimates for eigenvalues (errval) and right eigenvectors (errvec),
errval: 8.7e-16 7.8e-16 7.8e-16 9.9%e-16
errvec: 2.5e-15 9.0e-15 9.0e-15 1.1le-14

Mark 25 f08ylc.11 (last)

	f08ylc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Anderson et al. (1999)
	Kagstrom and Poromaa (1996)

	5 Arguments
	order
	job
	howmny
	select
	n
	a
	pda
	b
	pdb
	vl
	pdvl
	vr
	pdvr
	s
	dif
	mm
	m
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_ENUM_INT_2
	NE_ENUM_INT_3
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NO_LICENCE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

