
NAG Library Function Document

nag_zhsein (f08pxc)

1 Purpose

nag_zhsein (f08pxc) computes selected left and/or right eigenvectors of a complex upper Hessenberg
matrix corresponding to specified eigenvalues, by inverse iteration.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_zhsein (Nag_OrderType order, Nag_SideType side,
Nag_EigValsSourceType eig_source, Nag_InitVeenumtype initv,
const Nag_Boolean select[], Integer n, const Complex h[], Integer pdh,
Complex w[], Complex vl[], Integer pdvl, Complex vr[], Integer pdvr,
Integer mm, Integer *m, Integer ifaill[], Integer ifailr[],
NagError *fail)

3 Description

nag_zhsein (f08pxc) computes left and/or right eigenvectors of a complex upper Hessenberg matrix H,
corresponding to selected eigenvalues.

The right eigenvector x, and the left eigenvector y, corresponding to an eigenvalue �, are defined by:

Hx ¼ �x and yHH ¼ �yH or HHy ¼ ��y
� �

:

The eigenvectors are computed by inverse iteration. They are scaled so that max Re xið Þj j þ Imxij jð Þ ¼ 1.

If H has been formed by reduction of a complex general matrix A to upper Hessenberg form, then the
eigenvectors of H may be transformed to eigenvectors of A by a call to nag_zunmhr (f08nuc).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: side – Nag_SideType Input

On entry: indicates whether left and/or right eigenvectors are to be computed.

side ¼ Nag RightSide
Only right eigenvectors are computed.

side ¼ Nag LeftSide
Only left eigenvectors are computed.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08pxc

Mark 25 f08pxc.1



side ¼ Nag BothSides
Both left and right eigenvectors are computed.

Constraint: side ¼ Nag RightSide, Nag LeftSide or Nag BothSides.

3: eig source – Nag_EigValsSourceType Input

On entry: indicates whether the eigenvalues of H (stored in w) were found using nag_zhseqr
(f08psc).

eig source ¼ Nag HSEQRSource
The eigenvalues of H were found using nag_zhseqr (f08psc); thus if H has any zero
subdiagonal elements (and so is block triangular), then the jth eigenvalue can be assumed
to be an eigenvalue of the block containing the jth row/column. This property allows the
function to perform inverse iteration on just one diagonal block.

eig source ¼ Nag NotKnown
No such assumption is made and the function performs inverse iteration using the whole
matrix.

Constraint: eig source ¼ Nag HSEQRSource or Nag NotKnown.

4: initv – Nag_InitVeenumtype Input

On entry: indicates whether you are supplying initial estimates for the selected eigenvectors.

initv ¼ Nag NoVec
No initial estimates are supplied.

initv ¼ Nag UserVec
Initial estimates are supplied in vl and/or vr.

Constraint: initv ¼ Nag NoVec or Nag UserVec.

5: select½dim� – const Nag_Boolean Input

Note: the dimension, dim, of the array select must be at least max 1; nð Þ.
On entry: specifies which eigenvectors are to be computed. To select the eigenvector
corresponding to the eigenvalue w½j� 1�, select½j� 1� must be set to Nag_TRUE.

6: n – Integer Input

On entry: n, the order of the matrix H.

Constraint: n � 0.

7: h½dim� – const Complex Input

Note: the dimension, dim, of the array h must be at least max 1; pdh� nð Þ.
The i; jð Þth element of the matrix H is stored in

h½ j� 1ð Þ � pdhþ i� 1� when order ¼ Nag ColMajor;
h½ i� 1ð Þ � pdhþ j� 1� when order ¼ Nag RowMajor.

On entry: the n by n upper Hessenberg matrix H.

8: pdh – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array h.

Constraint: pdh � max 1; nð Þ.

9: w½dim� – Complex Input/Output

Note: the dimension, dim, of the array w must be at least max 1; nð Þ.

f08pxc NAG Library Manual

f08pxc.2 Mark 25



On entry: the eigenvalues of the matrix H. If eig source ¼ Nag HSEQRSource, the array must be
exactly as returned by nag_zhseqr (f08psc).

On exit: the real parts of some elements of w may be modified, as close eigenvalues are perturbed
slightly in searching for independent eigenvectors.

10: vl½dim� – Complex Input/Output

Note: the dimension, dim, of the array vl must be at least

max 1;pdvl�mmð Þ when side ¼ Nag LeftSide or Nag BothSides and
order ¼ Nag ColMajor;
max 1;n� pdvlð Þ when side ¼ Nag LeftSide or Nag BothSides and
order ¼ Nag RowMajor;
1 when side ¼ Nag RightSide.

The i; jð Þth element of the matrix is stored in

vl½ j� 1ð Þ � pdvlþ i� 1� when order ¼ Nag ColMajor;
vl½ i� 1ð Þ � pdvlþ j� 1� when order ¼ Nag RowMajor.

On entry: if initv ¼ Nag UserVec and side ¼ Nag LeftSide or Nag BothSides, vl must contain
starting vectors for inverse iteration for the left eigenvectors. Each starting vector must be stored
in the same row or column as will be used to store the corresponding eigenvector (see below).

If initv ¼ Nag NoVec, vl need not be set.

On exit: if side ¼ Nag LeftSide or Nag BothSides, vl contains the computed left eigenvectors (as
specified by select). The eigenvectors are stored consecutively in the rows or columns of the array
(depending on the value of order), in the same order as their eigenvalues.

If side ¼ Nag RightSide, vl is not referenced.

11: pdvl – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array vl.

Constraints:

if order ¼ Nag ColMajor,

if side ¼ Nag LeftSide or Nag BothSides, pdvl � n;
if side ¼ Nag RightSide, pdvl � 1.;

if order ¼ Nag RowMajor,

if side ¼ Nag LeftSide or Nag BothSides, pdvl � max 1;mmð Þ;
if side ¼ Nag RightSide, pdvl � 1.

if side ¼ Nag LeftSide or Nag BothSides, pdvl � max 1;mð Þ;
if side ¼ Nag RightSide, pdvl � 1..

12: vr½dim� – Complex Input/Output

Note: the dimension, dim, of the array vr must be at least

max 1;pdvr�mmð Þ when side ¼ Nag RightSide or Nag BothSides and
order ¼ Nag ColMajor;
max 1;n� pdvrð Þ when side ¼ Nag RightSide or Nag BothSides and
order ¼ Nag RowMajor;
1 when side ¼ Nag LeftSide.

The i; jð Þth element of the matrix is stored in

vr½ j� 1ð Þ � pdvrþ i� 1� when order ¼ Nag ColMajor;
vr½ i� 1ð Þ � pdvrþ j� 1� when order ¼ Nag RowMajor.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08pxc

Mark 25 f08pxc.3



On entry: if initv ¼ Nag UserVec and side ¼ Nag RightSide or Nag BothSides, vr must contain
starting vectors for inverse iteration for the right eigenvectors. Each starting vector must be stored
in the same row or column as will be used to store the corresponding eigenvector (see below).

If initv ¼ Nag NoVec, vr need not be set.

On exit: if side ¼ Nag RightSide or Nag BothSides, vr contains the computed right eigenvectors
(as specified by select). The eigenvectors are stored consecutively in the rows or columns of the
array (depending on the value of order), in the same order as their eigenvalues.

If side ¼ Nag LeftSide, vr is not referenced.

13: pdvr – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array vr.

Constraints:

if order ¼ Nag ColMajor,

if side ¼ Nag RightSide or Nag BothSides, pdvr � n;
if side ¼ Nag LeftSide, pdvr � 1.;

if order ¼ Nag RowMajor,

if side ¼ Nag RightSide or Nag BothSides, pdvr � max 1;mmð Þ;
if side ¼ Nag LeftSide, pdvr � 1.

if side ¼ Nag RightSide or Nag BothSides, pdvr � max 1;mð Þ;
if side ¼ Nag LeftSide, pdvr � 1..

14: mm – Integer Input

On entry: the number of columns in the arrays vl and/or vr if order ¼ Nag ColMajor or the
number of rows in the arrays if order ¼ Nag RowMajor. The actual number of rows or columns
required, requiredrowcol, is obtained by counting 1 for each selected real eigenvector and 2 for
each selected complex eigenvector (see select); 0 � requiredr owcol � n.

Constraint: mm � requiredr owcol.

15: m – Integer * Output

On exit: requiredrowcol, the number of selected eigenvectors.

16: ifaill½dim� – Integer Output

Note: the dimension, dim, of the array ifaill must be at least

max 1;mmð Þ when side ¼ Nag LeftSide or Nag BothSides;
1 when side ¼ Nag RightSide.

On exit: if side ¼ Nag LeftSide or Nag BothSides, then ifaill½i� 1� ¼ 0 if the selected left
eigenvector converged and ifaill½i� 1� ¼ j � 0 if the eigenvector stored in the ith row or column
of vl (corresponding to the jth eigenvalue) failed to converge.

If side ¼ Nag RightSide, ifaill is not referenced.

17: ifailr½dim� – Integer Output

Note: the dimension, dim, of the array ifailr must be at least

max 1;mmð Þ when side ¼ Nag RightSide or Nag BothSides;
1 when side ¼ Nag LeftSide.

On exit: if side ¼ Nag RightSide or Nag BothSides, then ifailr½i� 1� ¼ 0 if the selected right
eigenvector converged and ifailr½i� 1� ¼ j � 0 if the eigenvector stored in the ith column of vr
(corresponding to the jth eigenvalue) failed to converge.

f08pxc NAG Library Manual

f08pxc.4 Mark 25



If side ¼ Nag LeftSide, ifailr is not referenced.

18: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_CONVERGENCE

valueh i eigenvectors (as indicated by arguments ifaill and/or ifailr) failed to converge. The
corresponding columns of vl and/or vr contain no useful information.

NE_ENUM_INT_2

On entry, side ¼ valueh i, pdvl ¼ valueh i, m ¼ valueh i.
Constraint: if side ¼ Nag LeftSide or Nag BothSides, pdvl � max 1;mð Þ;
if side ¼ Nag RightSide, pdvl � 1.

On entry, side ¼ valueh i, pdvl ¼ valueh i, mm ¼ valueh i.
Constraint: if side ¼ Nag LeftSide or Nag BothSides, pdvl � max 1;mmð Þ;
if side ¼ Nag RightSide, pdvl � 1.

On entry, side ¼ valueh i, pdvl ¼ valueh i and n ¼ valueh i.
Constraint: if side ¼ Nag LeftSide or Nag BothSides, pdvl � n;
if side ¼ Nag RightSide, pdvl � 1.

On entry, side ¼ valueh i, pdvr ¼ valueh i, m ¼ valueh i.
Constraint: if side ¼ Nag RightSide or Nag BothSides, pdvr � max 1;mð Þ;
if side ¼ Nag LeftSide, pdvr � 1.

On entry, side ¼ valueh i, pdvr ¼ valueh i, mm ¼ valueh i.
Constraint: if side ¼ Nag RightSide or Nag BothSides, pdvr � max 1;mmð Þ;
if side ¼ Nag LeftSide, pdvr � 1.

On entry, side ¼ valueh i, pdvr ¼ valueh i and n ¼ valueh i.
Constraint: if side ¼ Nag RightSide or Nag BothSides, pdvr � n;
if side ¼ Nag LeftSide, pdvr � 1.

NE_INT

On entry, mm ¼ valueh i.
Constraint: mm � requiredrowcol, where requiredr owcol is the number of selected eigenvectors.

On entry, n ¼ valueh i.
Constraint: n � 0.

On entry, pdh ¼ valueh i.
Constraint: pdh > 0.

On entry, pdvl ¼ valueh i.
Constraint: pdvl > 0.

On entry, pdvr ¼ valueh i.
Constraint: pdvr > 0.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08pxc

Mark 25 f08pxc.5



NE_INT_2

On entry, pdh ¼ valueh i and n ¼ valueh i.
Constraint: pdh � max 1;nð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

Each computed right eigenvector xi is the exact eigenvector of a nearby matrix Aþ Ei, such that
Eik k ¼ O �ð Þ Ak k. Hence the residual is small:

Axi � �ixik k ¼ O �ð Þ Ak k:

However, eigenvectors corresponding to close or coincident eigenvalues may not accurately span the
relevant subspaces.

Similar remarks apply to computed left eigenvectors.

8 Parallelism and Performance

nag_zhsein (f08pxc) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

nag_zhsein (f08pxc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The real analogue of this function is nag_dhsein (f08pkc).

10 Example

See Section 10 in nag_zunmhr (f08nuc).

f08pxc NAG Library Manual

f08pxc.6 (last) Mark 25


	f08pxc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Golub and Van Loan (1996)

	5 Arguments
	order
	side
	eig_source
	initv
	select
	n
	h
	pdh
	w
	vl
	pdvl
	vr
	pdvr
	mm
	m
	ifaill
	ifailr
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CONVERGENCE
	NE_ENUM_INT_2
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NO_LICENCE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction




