f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

NAG Library Chapter Introduction

f08 — Least Squares and Eigenvalue Problems (LAPACK)

Contents
1 Scope of the Chapter............. 3
2 Background to the Problems 3
2.1 Linear Least Squares Problems. 3
2.2 Orthogonal Factorizations and Least Squares Problems 4
2.2.1 QR factorization u it 4
2.2.2 LQ factorization e 5
2.2.3 @R factorization with column pivoting.ot .. 5
2.2.4 Complete orthogonal factorization. 0. .. 6
2.2.5 Updating a QR factorization.ttt 6
2.2.6 Other factorizations e 7
2.3 The Singular Value Decompositiono iiriiiininenan... 7
2.4 The Singular Value Decomposition and Least Squares Problems 8
2.5 Generalized Linear Least Squares Problems............................... 8
2.6 Generalized Orthogonal Factorization and Generalized Linear Least Squares
Problems 8
2.6.1 Generalized QR Factorization., 8
2.6.2 Generalized RQ Factorization. 9
2.6.3 Generalized Singular Value Decomposition (GSVD)...................... 11
2.6.4 The Full CS Decomposition of Orthogonal Matrices 12
2.7 Symmetric Eigenvalue Problems. 13
2.8 Generalized Symmetric-definite Eigenvalue Problems................... ... 14
2.9 Packed Storage for Symmetric Matrices 14
2.10 Band MatriCes.ot 14
2.11 Nonsymmetric Eigenvalue Problems 15
2.12 Generalized Nonsymmetric Eigenvalue Problem 16
2.13 The Sylvester Equation and the Generalized Sylvester Equation............. 17
2.14 Error and Perturbation Bounds and Condition Numbers.................... 17
2.14.1 Least squares problems 18
2.14.2 The singular value decomposition., 19
2.14.3 The symmetric eigenproblem. 20
2.14.4 The generalized symmetric-definite eigenproblem........................ 21
2.14.5 The nonsymmetric eigenproblem. oo, 21
2.14.6 Balancing and condition for the nonsymmetric eigenproblem............... 22
2.14.7 The generalized nonsymmetric eigenvalue problem. 22
2.14.8 Balancing the generalized eigenvalue problem 23
2.14.90ther problems e 23
2.15 Block Partitioned Algorithms 23
Mark 25 f08.1

Introduction — f08 NAG Library Manual

3

R I SN W

108.2

Recommendations on Choice and Use of Available Functions......... .. 24
3.1 Available Functions 24
3.1.1 Driver functionst 24
3.1.1.1 Linear least squares problems (LLS)............................ 24

3.1.1.2 Generalized linear least squares problems (LSE and GLM) 24

3.1.1.3 Symmetric eigenvalue problems (SEP) 24

3.1.1.4 Nonsymmetric eigenvalue problem (NEP)........................ 25

3.1.1.5 Singular value decomposition (SVD) 25

3.1.1.6 Generalized symmetric definite eigenvalue problems (GSEP)......... 25

3.1.1.7 Generalized nonsymmetric eigenvalue problem (GNEP)............. 26

3.1.1.8 Generalized singular value decomposition (GSVD)................. 26

3.1.2 Computational functions i, 26
3.1.2.1 Orthogonal factorizations i, 26

3.1.2.2 Generalized orthogonal factorizations 27

3.1.2.3 Singular value problems 27

3.1.2.4 Generalized singular value decomposition. 28

3.1.2.5 Symmetric eigenvalue problems 28

3.1.2.6 Generalized symmetric-definite eigenvalue problems. 30

3.1.2.7 Nonsymmetric eigenvalue problems 31

3.1.2.8 Generalized nonsymmetric eigenvalue problems................... 32

3.1.2.9 The Sylvester equation and the generalized Sylvester equation 33

3.2 NAG Names and LAPACK Names 34
3.3 Matrix Storage Schemes 35
3.3.1 Conventional StOTage.ttt 35

3.3.2 Packed storage 35

333 Band StOrageottt e 35

3.3.4 Tridiagonal and bidiagonal matrices, 35

3.3.5 Real diagonal elements of complex matrices. 35

3.3.6 Representation of orthogonal or unitary matrices 35

3.4 Argument Conventions.uiuinint i 36
3.4.1 Option argUmENtSottt e ettt e e 36

3.4.2 Problem dimensionsttt 36
Decision Trees. 37
4.1 General Purpose Functions (eigenvalues and eigenvectors) 37
4.2 General Purpose Functions (singular value decomposition) 42
Functionality Index. 42
Auxiliary Functions Associated with Library Function Arguments 49
Functions Withdrawn or Scheduled for Withdrawal 49
References. 49
Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

1 Scope of the Chapter

This chapter provides functions for the solution of linear least squares problems, eigenvalue problems
and singular value problems, as well as associated computations. It provides functions for:

— solution of linear least squares problems
— solution of symmetric eigenvalue problems
— solution of nonsymmetric eigenvalue problems
— solution of singular value problems
— solution of generalized linear least squares problems
— solution of generalized symmetric-definite eigenvalue problems
— solution of generalized nonsymmetric eigenvalue problems
— solution of generalized singular value problems
— matrix factorizations associated with the above problems
— estimating condition numbers of eigenvalue and eigenvector problems
— estimating the numerical rank of a matrix
— solution of the Sylvester matrix equation
Functions are provided for both real and complex data.

For a general introduction to the solution of linear least squares problems, you should turn first to
Chapter f04. The decision trees, at the end of Chapter f04, direct you to the most appropriate functions
in Chapters f04 or f08. Chapters f04 and fO8 contain Black Box (or driver) functions which enable
standard linear least squares problems to be solved by a call to a single function.

For a general introduction to eigenvalue and singular value problems, you should turn first to Chapter
f02. The decision trees, at the end of Chapter f02, direct you to the most appropriate functions in
Chapters 02 or f08. Chapters f02 and f08 contain Black Box (or driver) functions which enable standard
types of problem to be solved by a call to a single function. Often functions in Chapter f02 call Chapter
fO8 functions to perform the necessary computational tasks.

The functions in this chapter (Chapter f08) handle only dense, band, tridiagonal and Hessenberg matrices
(not matrices with more specialised structures, or general sparse matrices). The tables in Section 3 and
the decision trees in Section 4 direct you to the most appropriate functions in Chapter f08.

The functions in this chapter have all been derived from the LAPACK project (see Anderson et al.
(1999)). They have been designed to be efficient on a wide range of high-performance computers,
without compromising efficiency on conventional serial machines.

It is not expected that you will need to read all of the following sections, but rather you will pick out
those sections relevant to your particular problem.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of linear least squares problems,
eigenvalue and singular value problems. Consult a standard textbook for a more thorough discussion, for
example Golub and Van Loan (2012).

2.1 Linear Least Squares Problems
The linear least squares problem is

minimize||b — Ax||,, (1)
T

where A is an m by n matrix, b is a given m element vector and x is an n-element solution vector.

Mark 25 f08.3

Introduction — f08 NAG Library Manual

In the most usual case m > n and rank(A) = n, so that A has full rank and in this case the solution to
problem (1) is unique; the problem is also referred to as finding a least squares solution to an
overdetermined system of linear equations.

When m < n and rank(A) = m, there are an infinite number of solutions x which exactly satisfy
b— Az = 0. In this case it is often useful to find the unique solution = which minimizes ||z||,, and the
problem is referred to as finding a minimum norm solution to an underdetermined system of linear
equations.

In the general case when we may have rank(A) < min(m,n) — in other words, A may be rank-deficient
— we seek the minimum norm least squares solution x which minimizes both ||z||, and ||b — Ax||,.

This chapter (Chapter f08) contains driver functions to solve these problems with a single call, as well as
computational functions that can be combined with functions in Chapter f07 to solve these linear least
squares problems. The next two sections discuss the factorizations that can be used in the solution of
linear least squares problems.

2.2 Orthogonal Factorizations and Least Squares Problems

A number of functions are provided for factorizing a general rectangular m by n matrix A, as the
product of an orthogonal matrix (unitary if complex) and a triangular (or possibly trapezoidal) matrix.

A real matrix Q is orthogonal if QTQ = I; a complex matrix Q is unitary if Q"Q = I. Orthogonal or
unitary matrices have the important property that they leave the 2-norm of a vector invariant, so that

2l = Q]

if @ is orthogonal or unitary. They usually help to maintain numerical stability because they do not
amplify rounding errors.

Orthogonal factorizations are used in the solution of linear least squares problems. They may also be
used to perform preliminary steps in the solution of eigenvalue or singular value problems, and are
useful tools in the solution of a number of other problems.

2.2.1 QR factorization

The most common, and best known, of the factorizations is the QR factorization given by
A_Q<§), if m > n,

where R is an n by n upper triangular matrix and () is an m by m orthogonal (or unitary) matrix. If A is
of full rank n, then R is nonsingular. It is sometimes convenient to write the factorization as

Az(@@)(ff)

which reduces to
A=QR,
where @); consists of the first n columns of), and), the remaining m — n columns.
If m <n, R is trapezoidal, and the factorization can be written
A=Q(RRy), if m <mn,
where R; is upper triangular and R, is rectangular.

The QR factorization can be used to solve the linear least squares problem (1) when m > n and A is of
full rank, since

)
2

b - Axll, = [|Q" - Q" Az, = H (;R“””)

where

f08.4 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

- (CI> ()~

&) T
@b
and c; is an n-element vector. Then z is the solution of the upper triangular system
Rx = ¢;.

The residual vector r is given by

rzb—Aa;zQ((g).

The residual sum of squares \|7"||§ may be computed without forming r explicitly, since

I7lly = 116 = Azlly = [lea]l5-

2.2.2 LQ factorization
The LQ factorization is given by

A= 0= (%) =10, itmsn

where L is m by m lower triangular, () is n by n orthogonal (or unitary), (); consists of the first m rows
of @), and (), the remaining n — m rows.

The LQ factorization of A is essentially the same as the QR factorization of AT (AM if A is complex),
since

A=(L 0)Q& AT :QT(LOT>.

The L@ factorization may be used to find a minimum norm solution of an underdetermined system of
linear equations Ax = b where A is m by n with m < n and has rank m. The solution is given by

. QT<L;b>_

2.2.3 QR factorization with column pivoting

To solve a linear least squares problem (1) when A is not of full rank, or the rank of A is in doubt, we
can perform either a QR factorization with column pivoting or a singular value decomposition.

The QR factorization with column pivoting is given by

A= Q(J()%)PT, m > n,
where () and R are as before and P is a (real) permutation matrix, chosen (in general) so that

|T11| Z |T22| 2 2 |7"7m|
and moreover, for each k,
|re| > HRk:jijT j=k+1,...,n.
If we put
_(Rn Rnp
= (M)

where R;; is the leading k£ by k upper triangular sub-matrix of R then, in exact arithmetic, if

rank(A) = k, the whole of the sub-matrix Ry, in rows and columns £+ 1 to n would be zero. In
numerical computation, the aim must be to determine an index k, such that the leading sub-matrix R, is

Mark 25 f08.5

Introduction — f08 NAG Library Manual

well-conditioned, and R;; is negligible, so that

R— (B R (Bn Ro
0 Ryn) 0 0o/
Then k is the effective rank of A. See Golub and Van Loan (2012) for a further discussion of numerical
rank determination.

The so-called basic solution to the linear least squares problem (1) can be obtained from this
factorization as
_ Rﬁlél
x=P (0 ,
where ¢ consists of just the first k£ elements of ¢ = QTb.

2.2.4 Complete orthogonal factorization

The QR factorization with column pivoting does not enable us to compute a minimum norm solution to a
rank-deficient linear least squares problem, unless R, = 0. However, by applying for further orthogonal
(or unitary) transformations from the right to the upper trapezoidal matrix (R“ Rlz), Ry, can be
eliminated:

(R Rp)Z=(Tn 0).

This gives the complete orthogonal factorization
_of Tt 0,7
=t 8)z
from which the minimum norm solution can be obtained as
v = PZ(TgI &)

2.2.5 Updating a QR factorization

Section 2.2.1 gave the forms of the QR factorization of an m by n matrix A for the two cases m > n
and m < n. Taking first the case m > n, the least squares solution of

Az =b= n (b
m-—n \ b

Rz = QTZ)

If the original system is now augmented by the addition of p rows so that we require the solution of

(3)=7 ()

where B is p by n, then this is equivalent to finding the least squares solution of

n
Ar="(B) ;= Qrb = b.
p\ B bs

This now requires the QR factorization of the n + p by n triangular-rectangular matrix A.

is the solution of

f08.6 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

For the case m < n < m + p, the least squares solution of the augmented system reduces to
~ . B . b3 . ~
Am—(Rl R2>x—<QTb>—b,

In both cases A can be written as a special case of a triangular-pentagonal matrix consisting of an upper
triangular part on top of a rectangular part which is itself on top of a trapezoidal part. In the first case
there is no trapezoidal part, in the second case a zero upper triangular part can be added, and more
generally the two cases can be combined.

where A is pentagonal.

2.2.6 Other factorizations
The QL and RQ factorizations are given by

A_Q(2>, if m>mn,

and
A:(O R)Q, ifm<n.

The factorizations are less commonly used than either the QR or L@ factorizations described above, but
have applications in, for example, the computation of generalized ()R factorizations.

2.3 The Singular Value Decomposition

The singular value decomposition (SVD) of an m by n matrix A is given by
A=UXVT, (A = UXV'in the complex case)

where U and V are orthogonal (unitary) and X' is an m by n diagonal matrix with real diagonal
elements, o;, such that

012022 2 Omin(m,n) > 0.

The o; are the singular values of A and the first min(m, n) columns of U and V are the left and right
singular vectors of A. The singular values and singular vectors satisfy

A’UZ' = 0O;U; and ATUZ‘ = 0O;V; (OI‘ AHUZ‘ = Uivi)
where u; and v; are the ¢th columns of U and V respectively.
The computation proceeds in the following stages.

1. The matrix A is reduced to bidiagonal form A = U, BVIT if Aisreal (A=1U,; BVIH if A is complex),
where U; and V] are orthogonal (unitary if A is complex), and B is real and upper bidiagonal when
m > n and lower bidiagonal when m < n, so that B is nonzero only on the main diagonal and
either on the first superdiagonal (if m > n) or the first subdiagonal (if m < n).

2. The SVD of the bidiagonal matrix B is computed as B = U22V2T, where U, and V, are orthogonal
and Y is diagonal as described above. The singular vectors of A are then U = U U, and V = V} V5.

If m > n, it may be more efficient to first perform a QR factorization of A, and then compute the SVD
of the n by n matrix R, since if A=QR and R=UXVT, then the SVD of A is given by
A= (QU)XVT

Similarly, if m < n, it may be more efficient to first perform an L(Q factorization of A.
This chapter supports two primary algorithms for computing the SVD of a bidiagonal matrix. They are:
(1) the divide and conquer algorithm;

(i) the QR algorithm.

Mark 25 f08.7

Introduction — f08 NAG Library Manual

The divide and conquer algorithm is much faster than the QR algorithm if singular vectors of large
matrices are required.

2.4 The Singular Value Decomposition and Least Squares Problems

The SVD may be used to find a minimum norm solution to a (possibly) rank-deficient linear least
squares problem (1). The effective rank, k, of A can be determined as the number of singular values

which exceed a suitable threshold. Let 5 be the leading k by k sub-matrix of ¥, and V be the matrix
consisting of the first k£ columns of V. Then the solution is given by

T = Vi‘ilél,

where ¢, consists of the first k elements of ¢ = UTh = USU[b.

2.5 Generalized Linear Least Squares Problems

The simple type of linear least squares problem described in Section 2.1 can be generalized in various
ways.

1. Linear least squares problems with equality constraints:
find 2 to minimize S = ||¢ — Az||; subjectto Bz =d,

where A is m by n and B is p by n, with p < n < m + p. The equations Bx = d may be regarded
as a set of equality constraints on the problem of minimizing S. Alternatively the problem may be
regarded as solving an overdetermined system of equations

(3)-=(2)

where some of the equations (those involving B) are to be solved exactly, and the others (those
involving A) are to be solved in a least squares sense. The problem has a unique solution on the

assumptions that B has full row rank p and the matrix <A has full column rank n. (For linear

B
least squares problems with inequality constraints, refer to Chapter ¢04.)
2. General Gauss—Markov linear model problems:

minimize ||y||, subjectto d= Az + By,

where A is m by n and B is m by p, with n < m <n + p. When B = I, the problem reduces to an
ordinary linear least squares problem. When B is square and nonsingular, it is equivalent to a
weighted linear least squares problem:

find x to minimize HB_I(d - Ax)||2.

The problem has a unique solution on the assumptions that A has full column rank 7, and the
matrix (A, B) has full row rank m. Unless B is diagonal, for numerical stability it is generally
preferable to solve a weighted linear least squares problem as a general Gauss—Markov linear model
problem.

2.6 Generalized Orthogonal Factorization and Generalized Linear Least Squares
Problems

2.6.1 Generalized QR Factorization

The generalized QR (GQR) factorization of an n by m matrix A and an n by p matrix B is given by
the pair of factorizations

A=QR and B=QTZ,

where () and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if A and B
are complex). R has the form

f08.8 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

m

R= m<R11>7 if n>m,

n—m 0
or

n m—-—n
R=n(Ry Rp), ifn<m,

where Rj; is upper triangular. T' has the form

p—n n
T:TL(0 le); lfngpa

or

p

T = n—g(;n), if n > p,
21

where T, or T, is upper triangular.

Note that if B is square and nonsingular, the GQR factorization of A and B implicitly gives the QR
factorization of the matrix B~ A:

B'A=Z7"(T"'R)

without explicitly computing the matrix inverse B! or the product B~'A (remembering that the inverse
of an invertible upper triangular matrix and the product of two upper triangular matrices is an upper
triangular matrix).

The GQR factorization can be used to solve the general (Gauss—Markov) linear model problem (GLM)
(see Section 2.5, but note that A and B are dimensioned differently there as m by n and p by n
respectively). Using the GQR factorization of A and B, we rewrite the equation d = Ax + By as

Q'd =Q"Az+ Q"By
= Rx +TZy.

We partition this as

m p—m+m n—m

di\ _ m(R,y m T Ty (7
dy n—m\ 0 n—m 0 Ty Y2
dy —_ T Y1) —
(d2>_Q d, and <y2>_Zy.

The GLM problem is solved by setting

where

y1=0 and yp=Ty'd

from which we obtain the desired solutions

w =R (d — Tiys) and y= ZT<y02).

2.6.2 Generalized RQ Factorization

The generalized RQ (GRQ) factorization of an m by n matrix A and a p by n matrix B is given by the
pair of factorizations

A=RQ, B=2TQ

Mark 25 f08.9

Introduction — f08 NAG Library Manual

where () and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if A and B
are complex). R has the form

or
n

R:m—n<R11>7 if m > n,
n \ R

where R, or Ry, is upper triangular. 7" has the form

n
T= n(T“)’ if p>n,
p—n\ 0
or
p n—p

T:p(T11 T12>’ if p <n,

where 717, is upper triangular.

Note that if B is square and nonsingular, the GRQ factorization of A and B implicitly gives the RQ
factorization of the matrix AB~!:

AB'= (RT) Z"

without explicitly computing the matrix B~! or the product AB~! (remembering that the inverse of an
invertible upper triangular matrix and the product of two upper triangular matrices is an upper triangular
matrix).

The GRQ factorization can be used to solve the linear equality-constrained least squares problem (LSE)
(see Section 2.5). We use the GRQ factorization of B and A (note that B and A have swapped roles),
written as

B=TQ ad A=ZRQ.
We write the linear equality constraints Bz = d as
TQx =d,

which we partition as:

n—p p
p(0 le) <g):d where <£;)5Qx

Therefore x;, is the solution of the upper triangular system

T]zxz =d.
Furthermore,
[Az —cll, = [Z"Ax—Z"c||,
= |RQx—Z'¢|,

We partition this expression as:

n—p p
p+m—n 0 Ry 1) e)’
where <Cl> = 7T¢.
e

f08.10 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

To solve the LSE problem, we set
Ryzi +Rippxy —c; =0
which gives z; as the solution of the upper triangular system

Rizy = c¢1 — Rppxo.

m:QT<2>

2.6.3 Generalized Singular Value Decomposition (GSVD)

Finally, the desired solution is given by

The generalized (or quotient) singular value decomposition of an m by n matrix A and a p by n matrix
B is given by the pair of factorizations

A=UX[0,RIQ" and B=VX[0,R|Q".
The matrices in these factorizations have the following properties:

— Uis m by m, Vis pbyp Qisn by n, and all three matrices are orthogonal. If A and B are
complex, these matrices are unitary instead of orthogonal, and QT should be replaced by Q" in the
pair of factorizations.

— R is r by r, upper triangular and nonsingular. [0, R] is r by n (in other words, the 0 is an » by n — r

zero matrix). The integer r is the rank of , and satisfies r < n.

A
B
— X is m by r, X, is p by r, both are real, non-negative and diagonal, and Zfﬂl + 2522 = I. Write
YY) =diag(ed,...,0?) and X)X, = diag(8?,...,32), where o; and §; lie in the interval from 0
to 1. The ratios «o;1/0,...,®, /B, are called the generalized singular values of the pair A, B. If

B; = 0, then the generalized singular value «;/f; is infinite.

2’1 and X, have the following detailed structures, depending on whether m > r or m < r. In the first
case, m > r, then

b (1 o b
Y= l1to C and JX) = é(g g)
m—k—1\0 0 P
Here [is the rank of B, k=r —1[, C and S are diagonal matrices satisfying C?> + S> =1, and S is
nonsingular. We may also identify oy =---=ap =1, apyy = ¢y, fori =1,2,...., i =--- =0 =0,
and Oy = sy, for i =1,2,...,1. Thus, the first k& generalized singular values «;/0,...,ar/0; are

infinite, and the remaining [generalized singular values are finite.

In the second case, when m < r,
k m—k k+1l—m
k(1 0 0
Y=
: m—k(O C 0
and

k m—k k+1l—m

m—=Fk [0 S 0

2ro=k+l-m|O0 0 1

p—1\0 0 0
Again, [is the rank of B, k=7 —1[, C and S are diagonal matrices satisfying C> + S?> = I, and S is
nonsingular, and we may identify aj=---=ap=1, oy =c;, for i=1,2,...,m—EFk,
Omi1=-=0a, =0, 1 =--=0,=0, Brri=84 fori=12,... m—kand Bp1=--=06=1.
Thus, the first k generalized singular values «y/f1,...,0a4/0; are infinite, and the remaining I

generalized singular values are finite.

Mark 25 f08.11

Introduction — f08 NAG Library Manual

Here are some important special cases of the generalized singular value decomposition. First, if B is
square and nonsingular, then » = n and the generalized singular value decomposition of A and B is
equivalent to the singular value decomposition of AB~!, where the singular values of AB~! are equal to
the generalized singular values of the pair A, B:

AB™ = (USiRQT) (VERRQT) ™ = U(Zy 25 V™.

o= (1)

if the columns of C are orthonormal, then r=mn, R=1 and the generalized singular value
decomposition of A and B is equivalent to the CS (Cosine—Sine) decomposition of C:

(3)=(5 ¥)(2)e

Third, the generalized eigenvalues and eigenvectors of ATA — ABTB can be expressed in terms of the
generalized singular value decomposition: Let

;XzQ(é éﬂ)

T T (0 0 T T (0 0
XAAX_<O ETZH) and XBBX_<O Zgﬂz)

Second, for the matrix C, where

Then

Therefore, the columns of X are the eigenvectors of ATA — ABTB, and ‘nontrivial’ eigenvalues are the
squares of the generalized singular values (see also Section 2.8). ‘Trivial’ eigenvalues are those
corresponding to the leading n — r columns of X, which span the common null space of ATA and B"B.
The ‘trivial eigenvalues’ are not well defined.

2.6.4 The Full CS Decomposition of Orthogonal Matrices

In Section 2.6.3 the CS (Cosine-Sine) decomposition of an orthogonal matrix partitioned into two

submatrices A and B was given by
Ay _ (U 0 2 or
B) \0 V p) '

The full CS decomposition of an m by m orthogonal matrix X partitions X into four submatrices and

factorizes as
T
Xn Xp)Y_ (U 0 2 =X\ (W 0
X1 Xm 0 Uh)\2a 2n 0 W
where, X is a p by ¢ submatrix (which implies the dimensions of X,, X, and X»,); U, U,, V; and

V, are orthogonal matrices of dimensions p, m — p, ¢ and m — q respectively; 2’| is the p by ¢ single-
diagonal matrix

kiy—r r q—kn
k'll —-T I 0 0 .
2= r 0 C 0 , ki1 =min(p, q)
p— kn 0 0
X1, is the p by m — ¢ single-diagonal matrix
m—q— klz T k12 -T
p— klz 0 0 .
S = r 0 S 0 |, kz=min(p,m—q),
klz —-Tr 0 0 I

271 is the m — p by ¢ single-diagonal matrix

f08.12 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

q—Fka v k-7
m—-—p— k21 0 0 .
X = r 0 S 0 , ka1 = min(m — p, q),
k‘z] -T 0 0 I
and, X is the m — p by ¢ single-diagonal matrix
kp—1r r m—q—kyp
kzz - T I 0 0 .
Xy = r 0 C 0 , ko =min(m —p,m —q)
m—p— k‘zz 0 0

where r = min(p, m — p,q, m — ¢q) and the missing zeros remind us that either the column or the row is
missing. The r by r diagonal matrices C and S are such that C? + S? = I.

This is equivalent to the simultaneous singular value decomposition of the four submatrices X, X»,
X21 and Xzz.

2.7 Symmetric Eigenvalue Problems

The symmetric eigenvalue problem is to find the eigenvalues, A, and corresponding eigenvectors, z # 0,
such that

Az= Xz, A=A", where A is real.
For the Hermitian eigenvalue problem we have
Az =)z, A=A where A is complex.
For both problems the eigenvalues A\ are real.

When all eigenvalues and eigenvectors have been computed, we write
A=7AZ" (or A=7ZAZYif complex),

where A is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an orthogonal (or
unitary) matrix whose columns are the eigenvectors. This is the classical spectral factorization of A.

The basic task of the symmetric eigenproblem functions is to compute values of A and, optionally,
corresponding vectors z for a given matrix A. This computation proceeds in the following stages.

1. The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal form T. If A is
real symmetric this decomposition is A = QT'QT with Q orthogonal and T’ symmetric tridiagonal. If
A is complex Hermitian, the decomposition is A = QT'Q" with @ unitary and T, as before, real
symmetric tridiagonal.

2. FEigenvalues and eigenvectors of the real symmetric tridiagonal matrix 7' are computed. If all
eigenvalues and eigenvectors are computed, this is equivalent to factorizing T as T = SAST, where
S is orthogonal and A is diagonal. The diagonal entries of A are the eigenvalues of T, which are
also the eigenvalues of A, and the columns of S are the eigenvectors of T'; the eigenvectors of A are
the columns of Z = QS, so that A = ZAZ" (ZAZ" when A is complex Hermitian).

This chapter supports four primary algorithms for computing eigenvalues and eigenvectors of real
symmetric matrices and complex Hermitian matrices. They are:

(i) the divide-and-conquer algorithm;

(i) the QR algorithm;

(ii1) bisection followed by inverse iteration;

(iv) the Relatively Robust Representation (RRR).

The divide-and-conquer algorithm is generally more efficient than the traditional QR algorithm for
computing all eigenvalues and eigenvectors, but the RRR algorithm tends to be fastest of all. For further
information and references see Anderson et al. (1999).

Mark 25 f08.13

Introduction — f08 NAG Library Manual

2.8 Generalized Symmetric-definite Eigenvalue Problems

This section is concerned with the solution of the generalized eigenvalue problems Az = ABz,
ABz = Az, and BAz = Az, where A and B are real symmetric or complex Hermitian and B is positive
definite. Each of these problems can be reduced to a standard symmetric eigenvalue problem, using a
Cholesky factorization of B as either B = LLT or B=U'U (LL" or UNU in the Hermitian case).

With B = LLT, we have

Az=ABz= (LT'AL™")(L"2) = A(L"2).
Hence the eigenvalues of Az = ABz are those of Cy = Ay, where C' is the symmetric matrix
C=L"'ALT and y= L'z In the complex case C is Hermitian with C = L'AL™ and y = L"z.

Table 1 summarises how each of the three types of problem may be reduced to standard form Cy = Ay,
and how the eigenvectors z of the original problem may be recovered from the eigenvectors y of the
reduced problem. The table applies to real problems; for complex problems, transposed matrices must be
replaced by conjugate-transposes.

Type of problem | Factorization of B Reduction Recovery of eigenvectors

1. | Az = \Bz B=LL", C=L"'AL" | z=L"Ty,

B=U"U C=UTAU' | z=UYy
2. | ABz= Az B=LLT, C=LTAL, z= LTy,

B=U"U C=UAUT 2=U"ly
3. | BAz=)Xz B=LLT, C=L"AL, z = Ly,

B=U"U C=UAUT z=Uly

Table 1

Reduction of generalized symmetric-definite eigenproblems to standard problems

When the generalized symmetric-definite problem has been reduced to the corresponding standard
problem Cy = Ay, this may then be solved using the functions described in the previous section. No
special functions are needed to recover the eigenvectors z of the generalized problem from the

eigenvectors y of the standard problem, because these computations are simple applications of Level 2 or
Level 3 BLAS (see Chapter f16).

2.9 Packed Storage for Symmetric Matrices

Functions which handle symmetric matrices are usually designed so that they use either the upper or
lower triangle of the matrix; it is not necessary to store the whole matrix. If either the upper or lower
triangle is stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining
elements of the array can be used to store other useful data. However, that is not always convenient, and
if it is important to economize on storage, the upper or lower triangle can be stored in a one-dimensional
array of length n(n + 1)/2; that is, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.2 in the f07 Chapter
Introduction.

Functions designed for packed storage are usually less efficient, especially on high-performance
computers, so there is a trade-off between storage and efficiency.

2.10 Band Matrices

A band matrix is one whose elements are confined to a relatively small number of subdiagonals or
superdiagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required. The storage scheme for band matrices is described in
Section 3.3.4 in the f07 Chapter Introduction.

f08.14 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

If the problem is the generalized symmetric definite eigenvalue problem Az = ABz and the matrices A
and B are additionally banded, the matrix C' as defined in Section 2.8 is, in general, full. We can reduce
the problem to a banded standard problem by modifying the definition of C' thus:

C=X'AX, where X=U'Q orL'Q,
where () is an orthogonal matrix chosen to ensure that C' has bandwidth no greater than that of A.

A further refinement is possible when A and B are banded, which halves the amount of work required to
form C. Instead of the standard Cholesky factorization of B as UTU or LLT, we use a split Cholesky

with Uj; upper triangular and Ly, lower triangular of order approximately n/2; S has the same
bandwidth as B.

2.11 Nonsymmetric Eigenvalue Problems

The nonsymmetric eigenvalue problem is to find the eigenvalues, A, and corresponding eigenvectors,
v # 0, such that

Av = dv.
More precisely, a vector v as just defined is called a right eigenvector of A, and a vector u # 0 satisfying
u'A=M" (A =X " when u is complex)
is called a left eigenvector of A.
A real matrix A may have complex eigenvalues, occurring as complex conjugate pairs.

This problem can be solved via the Schur factorization of A, defined in the real case as
A=272TZ",

where Z is an orthogonal matrix and 7" is an upper quasi-triangular matrix with 1 by 1 and 2 by 2
diagonal blocks, the 2 by 2 blocks corresponding to complex conjugate pairs of eigenvalues of A. In the
complex case, the Schur factorization is

A= ZTZH,
where Z is unitary and 7' is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 < k < n), the first £ columns of Z form an
orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal of
T. Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors
rather than eigenvectors. It is possible to order the Schur factorization so that any desired set of &
eigenvalues occupy the k leading positions on the diagonal of 7.

The two basic tasks of the nonsymmetric eigenvalue functions are to compute, for a given matrix A, all
n values of A and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and the
Schur factorization.

These two basic tasks can be performed in the following stages.

1. A general matrix A is reduced to upper Hessenberg form H which is zero below the first
subdiagonal. The reduction may be written A = QHQT with Q orthogonal if A is real, or
A= QHQ" with Q unitary if A is complex.

2. The upper Hessenberg matrix H is reduced to Schur form 7', giving the Schur factorization
H = STS" (for H real) or H = STS" (for H complex). The matrix S (the Schur vectors of H)
may optionally be computed as well. Alternatively S may be postmultiplied into the matrix @
determined in stage 1, to give the matrix Z = @5, the Schur vectors of A. The eigenvalues are
obtained from the diagonal elements or diagonal blocks of T

Mark 25 f08.15

Introduction — f08 NAG Library Manual

3. Given the eigenvalues, the eigenvectors may be computed in two different ways. Inverse iteration
can be performed on H to compute the eigenvectors of H, and then the eigenvectors can be
multiplied by the matrix) in order to transform them to eigenvectors of A. Alternatively the
eigenvectors of T' can be computed, and optionally transformed to those of H or A if the matrix .S
or Z is supplied.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix. This
is discussed further in Section 2.14.6 below.

2.12 Generalized Nonsymmetric Eigenvalue Problem

The generalized nonsymmetric eigenvalue problem is to find the eigenvalues, A\, and corresponding
eigenvectors, v # 0, such that

Av = \Buw.

More precisely, a vector v as just defined is called a right eigenvector of the matrix pair (A, B), and a
vector u # 0 satisfying

u'"A=X "B (u"A = "B when u is complex)
is called a left eigenvector of the matrix pair (A, B).

If B is singular then the problem has one or more infinite eigenvalues \ = oo, corresponding to Bv = 0.
Note that if A is nonsingular, then the equivalent problem pAv = Buv is perfectly well defined and an
infinite eigenvalue corresponds to p = 0. To deal with both finite (including zero) and infinite
eigenvalues, the functions in this chapter do not compute A explicitly, but rather return a pair of numbers

(v, B) such that if 3#0
A=a/p

and if «#0 and §=0 then A =o00. § is always returned as real and non-negative. Of course,
computationally an infinite eigenvalue may correspond to a small [rather than an exact zero.

For a given pair (A, B) the set of all the matrices of the form (A — AB) is called a matrix pencil and A
and v are said to be an eigenvalue and eigenvector of the pencil (A — AB). If A and B are both singular
and share a common null space then

det(A—AB)=0

so that the pencil (A — AB) is singular for all \. In other words any A can be regarded as an eigenvalue.
In exact arithmetic a singular pencil will have o = 3 = 0 for some («, 3). Computationally if some pair
(a, B) is small then the pencil is singular, or nearly singular, and no reliance can be placed on any of the
computed eigenvalues. Singular pencils can also manifest themselves in other ways; see, in particular,
Sections 2.3.5.2 and 4.11.1.4 of Anderson et al. (1999) for further details.

The generalized eigenvalue problem can be solved via the generalized Schur factorization of the pair
(A, B) defined in the real case as

A=QSZ", B=QTZ,

where () and Z are orthogonal, T is upper triangular with non-negative diagonal elements and S is upper
quasi-triangular with 1 by 1 and 2 by 2 diagonal blocks, the 2 by 2 blocks corresponding to complex
conjugate pairs of eigenvalues. In the complex case, the generalized Schur factorization is

A=Qsz", B=QTZ",

where () and Z are unitary and S and T are upper triangular, with 7" having real non-negative diagonal
elements. The columns of @) and Z are called respectively the left and right generalized Schur vectors
and span pairs of deflating subspaces of A and B, which are a generalization of invariant subspaces.

It is possible to order the generalized Schur factorization so that any desired set of k eigenvalues
correspond to the k leading positions on the diagonals of the pair (S, 7).

f08.16 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

The two basic tasks of the generalized nonsymmetric eigenvalue functions are to compute, for a given
pair (A, B), all n values of X and, if desired, their associated right eigenvectors v and/or left eigenvectors
u, and the generalized Schur factorization.

These two basic tasks can be performed in the following stages.

1. The matrix pair (A, B) is reduced to generalized upper Hessenberg form (H, R), where H is upper
Hessenberg (zero below the first subdiagonal) and R is upper triangular. The reduction may be
written as A=Q HZ!,B=Q RZ] in the real case with Q; and Z, orthogonal, and
A=@Q HZ!, B=QRZ! in the complex case with Q; and Z unitary.

2. The generalized upper Hessenberg form (H, R) is reduced to the generalized Schur form (S,T)
using the generalized Schur factorization H = Q,SZ}, R = Q,TZ7 in the real case with), and 2,
orthogonal, and H = QzSZ§I ,R= QZTZ;I in the complex case. The generalized Schur vectors of
(A, B) are given by Q = Q1Qy, Z = Z,Z,. The eigenvalues are obtained from the diagonal
elements (or blocks) of the pair (S5,T).

3. Given the eigenvalues, the eigenvectors of the pair (S,7) can be computed, and optionally
transformed to those of (H, R) or (A, B).

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix pair.
This is discussed further in Section 2.14.8 below.

2.13 The Sylvester Equation and the Generalized Sylvester Equation
The Sylvester equation is a matrix equation of the form
AX + XB=C,

where A, B, and C are given matrices with A being m by m, B an n by n matrix and C, and the
solution matrix X, m by n matrices. The solution of a special case of this equation occurs in the
computation of the condition number for an invariant subspace, but a combination of functions in this
chapter allows the solution of the general Sylvester equation.

Functions are also provided for solving a special case of the generalized Sylvester equations
AR—-LB=C, DR—-LE=F,

where (A, D), (B,E) and (C,F) are given matrix pairs, and R and L are the solution matrices.

2.14 Error and Perturbation Bounds and Condition Numbers

In this section we discuss the effects of rounding errors in the solution process and the effects of
uncertainties in the data, on the solution to the problem. A number of the functions in this chapter return
information, such as condition numbers, that allow these effects to be assessed. First we discuss some
notation used in the error bounds of later sections.

The bounds usually contain the factor p(n) (or p(m,n)), which grows as a function of the matrix
dimension n (or matrix dimensions m and n). It measures how errors can grow as a function of the
matrix dimension, and represents a potentially different function for each problem. In practice, it usually
grows just linearly; p(n) < 10n is often true, although generally only much weaker bounds can be
actually proved. We normally describe p(n) as a ‘modestly growing’ function of n. For detailed
derivations of various p(n), see Golub and Van Loan (2012) and Wilkinson (1965).

For linear equation (see Chapter f07) and least squares solvers, we consider bounds on the relative error
||z — z||/||z|| in the computed solution &, where x is the true solution. For eigenvalue problems we
consider bounds on the error |/\i — XZ| in the ¢th computed eigenvalue)A\i, where); is the true ith
eigenvalue. For singular value problems we similarly consider bounds |o; — &

Bounding the error in computed eigenvectors and singular vectors ©; is more subtle because these
vectors are not unique: even though we restrict ||0;l, = 1 and ||v;||, = 1, we may still multiply them by
arbitrary constants of absolute value 1. So to avoid ambiguity we bound the angular difference between
v; and the true vector v;, so that

Mark 25 f08.17

Introduction — f08 NAG Library Manual

O(v;,9;) = acute angle between v; and ¥ @
= arccos|vl'd;|.

Here arccos(f) is in the standard range: 0 < arccos(f) < m. When 60(v;, 0;) is small, we can choose a
constant o with absolute value 1 so that ||av; — 05|, = 0(v;, 0;).

In addition to bounds for individual eigenvectors, bounds can be obtained for the spaces spanned by
collections of eigenvectors. These may be much more accurately determined than the individual
eigenvectors which span them. These spaces are called invariant subspaces in the case of eigenvectors,
because if v is any vector in the space, Av is also in the space, where A is the matrix. Again, we will use

angle to measure the difference between a computed space S and the true space S:

G(S, S’) — acute angle between S and S
= maxminf(s,5) or maxminf(s,S3) (3)

s€5 38 3e8 €S

570 520 §£0 570

H(S, S) may be computed as follows. Let S be a matrix whose columns are orthonormal and span S.

Similarly let S be an orthonormal matrix with columns spanning S. Then
G(S, S) = arccos Opin (SHS')

Finally, we remark on the accuracy of the bounds when they are large. Relative errors like |2 — x| /|| z|
and angular errors like 0(0;, v;) are only of interest when they are much less than 1. Some stated bounds
are not strictly true when they are close to 1, but rigorous bounds are much more complicated and
supply little extra information in the interesting case of small errors. These bounds are indicated by using
the symbol <, or ‘approximately less than’, instead of the usual <. Thus, when these bounds are close
to 1 or greater, they indicate that the computed answer may have no significant digits at all, but do not
otherwise bound the error.

A number of functions in this chapter return error estimates and/or condition number estimates directly.
In other cases Anderson et al. (1999) gives code fragments to illustrate the computation of these
estimates, and a number of the Chapter fO8 example programs, for the driver functions, implement these
code fragments.

2.14.1 Least squares problems

The conventional error analysis of linear least squares problems goes as follows. The problem is to find
the = minimizing ||Az — b||,. Let Z be the solution computed using one of the methods described above.
We discuss the most common case, where A is overdetermined (i.e., has more rows than columns) and
has full rank.

Then the computed solution £ has a small normwise backward error. In other words Z minimizes
I(A+ E)é — (b+ f)l,, where
£l ||f||2>
max , < p(n)e
<||A||2 116112

and p(n) is a modestly growing function of n and e is the machine precision. Let
K2(A) = Omax (A)/Omin (A), p = | Az —b||5, and sin(0) = p/||b||,. Then if p(n)e is small enough, the
error £ — x is bounded by

P <t 22 ano)ia) .

If A is rank-deficient, the problem can be regularized by treating all singular values less than a user-
specified threshold as exactly zero. See Golub and Van Loan (2012) for error bounds in this case, as well
as for the underdetermined case.

The solution of the overdetermined, full-rank problem may also be characterised as the solution of the
linear system of equations

f08.18 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

(r 9)(2)=(0)

By solving this linear system (see Chapter f07) component-wise error bounds can also be obtained (see
Arioli et al. (1989)).

2.14.2 The singular value decomposition

The usual error analysis of the SVD algorithm is as follows (see Golub and Van Loan (2012)).

The computed SVD, Uﬁ‘VT, is nearly the exact SVD of A+ E, ie.,, A+ E = (U + 517)2(17 + 6V) is

the true SVD, so that U+ 60U and V + 6V are both orthogonal, where IlElly/1|Ally < p(m,n)e,
HéUH < p(m,n)e, and H(SVH < p(m,n)e. Here p(m, n) is a modestly growing function of m and n and €
is the machine precision. Each computed singular value &; differs from the true o; by an amount
satisfying the bound

|é'7j — 0'7;| S p(m,n)eal.

Thus large singular values (those near ;) are computed to high relative accuracy and small ones may
not be.

The angular difference between the computed left singular vector 4; and the true wu; satisfies the

approximate bound
9(,&“ U,) s p(m7n)6||AH2
gap;

where

gap; = Iggl|oi — g

is the absolute gap between o; and the nearest other singular value. Thus, if ¢; is close to other singular
values, its corresponding singular vector u; may be inaccurate. The same bound applies to the computed
right singular vector ¥; and the true vector v;. The gaps may be easily obtained from the computed
singular values.

Let § be the space spanned by a collection of computed left singular vectors {t;,1 € I}, where I is a
subset of the integers from 1 to n. Let § be the corresponding true space. Then

0(5.5) < p(m, n)el| Ally
R gap;

where
gapy = min{|o. o fori € 1,j¢ 1)

is the absolute gap between the singular values in I and the nearest other singular value. Thus, a cluster
of close singular values which is far away from any other singular value may have a well determined
space S even if its individual singular vectors are ill-conditioned. The same bound applies to a set of
right singular vectors {v;,i € I'}.

In the special case of bidiagonal matrices, the singular values and singular vectors may be computed
much more accurately (see Demmel and Kahan (1990)). A bidiagonal matrix B has nonzero entries only
on the main diagonal and the diagonal immediately above it (or immediately below it). Reduction of a
dense matrix to bidiagonal form B can introduce additional errors, so the following bounds for the
bidiagonal case do not apply to the dense case.

Using the functions in this chapter, each computed singular value of a bidiagonal matrix is accurate to
nearly full relative accuracy, no matter how tiny it is, so that

|(5’1 — Uil S p(m,n)eai.

Mark 25 f08.19

Introduction — f08 NAG Library Manual

The computed left singular vector %; has an angular error at most about
. m,n)e
relgap,
where

relgap, = rggl|a7 —0oj|/(oi + ;)

is the relative gap between o; and the nearest other singular value. The same bound applies to the right
singular vector ¢; and v;. Since the relative gap may be much larger than the absolute gap, this error
bound may be much smaller than the previous one. The relative gaps may be easily obtained from the
computed singular values.

2.14.3 The symmetric eigenproblem
The usual error analysis of the symmetric eigenproblem is as follows (see Parlett (1998)).
The computed eigendecomposition ZAZT s nearly the exact eigendecomposition of A+ F, i.e.,

A+ FE = (Z+ 62)21(2—1— 6Z)T is the true eigendecomposition so that Z + 67 is orthogonal, where
lElly/1|Ally < p(n)e and ||6Z}|2 < p(n)e and p(n) is a modestly growing function of n and € is the

machine precision. Each computed eigenvalue \; differs from the true \; by an amount satisfying the
bound

A = Ai] < p(n)el| All-
Thus large eigenvalues (those near max|\;| = ||A||,) are computed to high relative accuracy and small

ones may not be.

The angular difference between the computed unit eigenvector 2; and the true z; satisfies the approximate
bound

06,) < Pl Al
R gap;

if p(n)e is small enough, where

gap; = min[; =)|

is the absolute gap between \; and the nearest other eigenvalue. Thus, if \; is close to other eigenvalues,
its corresponding eigenvector z; may be inaccurate. The gaps may be easily obtained from the computed
eigenvalues.

Let S be the invariant subspace spanned by a collection of eigenvectors {%;,7 € I'}, where I is a subset
of the integers from 1 to n. Let § be the corresponding true subspace. Then

9(3* S) < M
T gapy
where
gapI:min{|)\i—)\j| forielvj¢l}

is the absolute gap between the eigenvalues in I and the nearest other eigenvalue. Thus, a cluster of
close eigenvalues which is far away from any other eigenvalue may have a well determined invariant

subspace S even if its individual eigenvectors are ill-conditioned.

In the special case of a real symmetric tridiagonal matrix 7', functions in this chapter can compute the
eigenvalues and eigenvectors much more accurately. See Anderson et al. (1999) for further details.

f08.20 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

2.14.4 The generalized symmetric-definite eigenproblem

The three types of problem to be considered are A — AB, AB — A\l and BA — A\I. In each case A and B
are real symmetric (or complex Hermitian) and B is positive definite. We consider each case in turn,
assuming that functions in this chapter are used to transform the generalized problem to the standard
symmetric problem, followed by the solution of the symmetric problem. In all cases

gap; = fggl}/\z -)\j|
is the absolute gap between \; and the nearest other eigenvalue.
1. A — AB. The computed eigenvalues X can differ from the true eigenvalues \; by an amount
}):2 - /\7:} N P(n)fHB_IHQHAHQ'

The angular difference between the computed eigenvector 2; and the true eigenvector z; is

_ 1/2
05,) < PP leglll;quw» |

2. AB— M or BA — AL The computed eigenvalues A; can differ from the true eigenvalues); by an
amount

A = Ai] < p(n)el Bllo[| All,-
The angular difference between the computed eigenvector 2; and the true eigenvector z; is

06,) < PMB 1AL (sa(3)
’ ~ gap;

These error bounds are large when B is ill-conditioned with respect to inversion (x;(B) is large). It is
often the case that the eigenvalues and eigenvectors are much better conditioned than indicated here.
One way to get tighter bounds is effective when the diagonal entries of B differ widely in magnitude, as
for example with a graded matrix.

1. A—)\B. Let D = diag (bl_ll/ U 2) be a diagonal matrix. Then replace B by DBD and A by
DAD in the above bounds.

2. AB— Ml or BA— AL Let D= diag(bfll/z, e b’1/2> be a diagonal matrix. Then replace B by

rrnn

DBD and A by D"*AD~! in the above bounds.
Further details can be found in Anderson et al. (1999).

2.14.5 The nonsymmetric eigenproblem

The nonsymmetric eigenvalue problem is more complicated than the symmetric eigenvalue problem. In
this section, we just summarise the bounds. Further details can be found in Anderson et al. (1999).

We let A; be the ith computed eigenvalue and \; the th true eigenvalue. Let ©; be the corresponding
computed right eigenvector, and v; the true right eigenvector (so Av; = \jv;). If I is a subset of the

integers from 1 to n, we let \; denote the average of the selected eigenvalues: \j = (Z)\Z) / <Zl),

icl icl
and similarly for):,. We also let §; denote the subspace spanned by {v;,i € I'}; it is called a right
invariant subspace because if v is any vector in S; then Av is also in ;. 8, is the corresponding
computed subspace.

The algorithms for the nonsymmetric eigenproblem are normwise backward stable: they compute the
exact eigenvalues, eigenvectors and invariant subspaces of slightly perturbed matrices (A + E), where
|E|| < p(n)e||A||l. Some of the bounds are stated in terms of || E||, and others in terms of || E|| »; one may
use p(n)e for either quantity.

Mark 25 f08.21

Introduction — f08 NAG Library Manual

Functions are provided so that, for each (\;, ;) pair the two values s; and sep;, or for a selected subset 1
of eigenvalues the values s; and sep; can be obtained, for which the error bounds in Table 2 are true for
sufficiently small ||E||, (which is why they are called asymptotic):

Simple eigenvalue ‘)A\Z —)\i‘ < E|,/ s

Eigenvalue cluster | |X; — Af| < || Elo/s1

Eigenvector 0(0:,vi) < 1E|| g/ sep;

Invariant subspace 9(5@[’5[) < | Ellp/seps

Table 2
Asymptotic error bounds for the nonsymmetric
eigenproblem

If the problem is ill-conditioned, the asymptotic bounds may only hold for extremely small || E||. The
global error bounds of Table 3 are guaranteed to hold for all ||E||, < s x sep/4:

Simple |,{Z. _ /\i| < n||lE|y/s; Holds for all £
eigenvalue
Eigenvalue |j\1 —)\1| <2||E|ly/sr1 Requires || E||p < s1 x sep;/4
cluster
Eigenvector 0(0;,v;) < arctan(2||E| z/ (sep; — 4||E||p/s:)) Requires |||y < s; x sep; /4
Invariant 0(51.81) < arctan QI E| o/ (sepy — 4| Bl /sr)) | Reauires [Ellp < sr > sepy/4
subspace

Table 3

Global error bounds for the nonsymmetric eigenproblem

2.14.6 Balancing and condition for the nonsymmetric eigenproblem

There are two preprocessing steps one may perform on a matrix A in order to make its eigenproblem
easier. The first is permutation, or reordering the rows and columns to make A more nearly upper
triangular (closer to Schur form): A’ = PAPT, where P is a permutation matrix. If A’ is permutable to
upper triangular form (or close to it), then no floating-point operations (or very few) are needed to
reduce it to Schur form. The second is scaling by a diagonal matrix D to make the rows and columns of
A" more nearly equal in norm: A” = DA’D~!. Scaling can make the matrix norm smaller with respect to
the eigenvalues, and so possibly reduce the inaccuracy contributed by roundoff (see Chapter 11 of
Wilkinson and Reinsch (1971)). We refer to these two operations as balancing.

Permuting has no effect on the condition numbers or their interpretation as described previously. Scaling,
however, does change their interpretation and further details can be found in Anderson et al. (1999).

2.14.7 The generalized nonsymmetric eigenvalue problem

The algorithms for the generalized nonsymmetric eigenvalue problem are normwise backward stable:
they compute the exact eigenvalues (as the pairs («, 3)), eigenvectors and deflating subspaces of slightly
perturbed pairs (A + F, B+ F), where

I(E, F)llp < p(n)ell(A, B)|[-

Asymptotic and global error bounds can be obtained, which are generalizations of those given in
Tables 2 and 3. See Section 4.11 of Anderson et al (1999) for details. Functions are provided to
compute estimates of reciprocal conditions numbers for eigenvalues and eigenspaces.

f08.22 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

2.14.8 Balancing the generalized eigenvalue problem

As with the standard nonsymmetric eigenvalue problem, there are two preprocessing steps one may
perform on a matrix pair (A, B) in order to make its eigenproblem easier; permutation and scaling,
which together are referred to as balancing, as indicated in the following two steps.

1. The balancing function first attempts to permute A and B to block upper triangular form by a
similarity transformation:

Fy Fip Fiz

PAPT = F = Fyn By,
F33
G Gun Gis

PBPT =G = Gy G |,
G33

where P is a permutation matrix, Fii, F33, G and G33 are upper triangular. Then the diagonal
elements of the matrix (Fi;,G1y) and (G33, Hs3) are generalized eigenvalues of (A, B). The rest of
the generalized eigenvalues are given by the matrix pair (F3;,Gay). Subsequent operations to
compute the eigenvalues of (A, B) need only be applied to the matrix (F,,G2;); this can save a
significant amount of work if (F3,, G2;) is smaller than the original matrix pair (A, B). If no suitable
permutation exists (as is often the case), then there is no gain in efficiency or accuracy.

2. The balancing function applies a diagonal similarity transformation to (F, G), to make the rows and
columns of (Fy,,Gy,) as close as possible in the norm:

I Fi Fi Fi3 1
DFD ! = Ds, Fy I D2721 s
I F33 I
I G Gn Gz 1
DGD™! = Dy Gy G D2_21
I Gy I

This transformation usually improves the accuracy of computed generalized eigenvalues and
eigenvectors. However, there are exceptional occasions when this transformation increases the norm
of the pencil; in this case accuracy could be lower with diagonal balancing.

See Anderson et al. (1999) for further details.

2.14.9 Other problems

Error bounds for other problems such as the generalized linear least squares problem and generalized
singular value decomposition can be found in Anderson et al. (1999).

2.15 Block Partitioned Algorithms

A number of the functions in this chapter use what is termed a block partitioned algorithm. This means
that at each major step of the algorithm a block of rows or columns is updated, and much of the
computation is performed by matrix-matrix operations on these blocks. The matrix-matrix operations are
performed by calls to the Level 3 BLAS (see Chapter fl16), which are the key to achieving high
performance on many modern computers. In the case of the QR algorithm for reducing an upper
Hessenberg matrix to Schur form, a multishift strategy is used in order to improve performance. See
Golub and Van Loan (2012) or Anderson et al. (1999) for more about block partitioned algorithms and
the multishift strategy.

The performance of a block partitioned algorithm varies to some extent with the block size — that is, the
number of rows or columns per block. This is a machine-dependent argument, which is set to a suitable
value when the library is implemented on each range of machines. You do not normally need to be

Mark 25 f08.23

Introduction — f08 NAG Library Manual

aware of what value is being used. Different block sizes may be used for different functions. Values in
the range 16 to 64 are typical.

On more conventional machines there is often no advantage from using a block partitioned algorithm,
and then the functions use an unblocked algorithm (effectively a block size of 1), relying solely on calls
to the Level 2 BLAS (see Chapter f16 again).

3 Recommendations on Choice and Use of Available Functions

3.1 Available Functions

The tables in the following sub-sections show the functions which are provided for performing different
computations on different types of matrices. Each entry in the table gives the NAG function short name.

Black box (or driver) functions are provided for the solution of most problems. In a number of cases
there are simple drivers, which just return the solution to the problem, as well as expert drivers, which
return additional information, such as condition number estimates, and may offer additional facilities
such as balancing. The following sub-sections give tables for the driver functions.

3.1.1 Driver functions

3.1.1.1 Linear least squares problems (LLS)

Operation real | complex
solve LLS using QR or L(Q factorization f08aac | f08anc
solve LLS using complete orthogonal factorization | f08bac | f08bnc
solve LLS using SVD fO8kac | f08knc
solve LLS using divide-and-conquer SVD fO8kec | f08kqc

3.1.1.2 Generalized linear least squares problems (LSE and GLM)

Operation real | complex

solve LSE problem using GRQ | f08zac | f08znc
solve GLM problem using GQR | f08zbc | f08zpc

3.1.1.3 Symmetric eigenvalue problems (SEP)

Function and storage scheme | real | complex

simple driver fO8fac | f08fnc
divide-and-conquer driver fO8fcc | f08fqc
expert driver f08fbc | f08fpc
RRR driver f08fdc | f08firc
packed storage

simple driver f08gac | f08gnc
divide-and-conquer driver f08gcc | f08gqc
expert driver f08gbc | f08gpc

f08.24 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK)

band matrix
simple driver
divide-and-conquer driver
expert driver

f08hac | f08hnc
fO8hcc | f08hqc
fO8hbc | f08hpc

tridiagonal matrix

3.1.1.5 Singular value decomposition (SVD)

simple driver f08jac

divide-and-conquer driver f08jcc

expert driver f08jbc

RRR driver f08jdc

3.1.1.4 Nonsymmetric eigenvalue problem (NEP)

Function and storage scheme real | complex
simple driver for Schur factorization | f08pac | fO8pnc
expert driver for Schur factorization | fO8pbc | fO8ppc
simple driver for eigenvalues/vectors | f08nac | f08nnc
expert driver for eigenvalues/vectors | f08nbc | fO8npc

Function and storage scheme real complex

simple driver fO8kbc | f08kpc
divide-and-conquer driver fO8kdc | f08krc
simple driver for one-sided Jacobi SVD | f08kjc
expert driver for one-sided Jacobi SVD | f08khc

3.1.1.6 Generalized symmetric definite eigenvalue problems (GSEP)

Mark 25

Function and storage scheme

real complex

simple driver
divide-and-conquer driver
expert driver

fO08sac | f08snc
f08scc | f08sqc
f08sbc | f08spc

packed storage

simple driver
divide-and-conquer driver
expert driver

fO8tac | f08tnc
fO8tcc | fO8tqc
fO8tbc | f08tpc

band matrix
simple driver
divide-and-conquer driver
expert driver

f08uac | f08unc
fO8ucc | f08uqc
fO8ubc | f08upc

Introduction — f08

108.25

Introduction — f08

3.1.1.7 Generalized nonsymmetric eigenvalue problem (GNEP)

NAG Library Manual

Function and storage scheme real complex
simple driver for Schur factorization | f08xac | f08xnc
expert driver for Schur factorization | f08xbc | f08xpc
simple driver for eigenvalues/vectors | f08wac | f08wnc
expert driver for eigenvalues/vectors | f08wbc | f08wpc

3.1.1.8 Generalized singular value decomposition (GSVD)

Function and storage scheme real complex

singular values/vectors fO8vac | f08vnc

3.1.2 Computational functions

It is possible to solve problems by calling two or more functions in sequence. Some common sequences
of functions are indicated in the tables in the following sub-sections; an asterisk (x) against a function
name means that the sequence of calls is illustrated in the example program for that function.

3.1.2.1 Orthogonal factorizations

Functions are provided for QR factorization (with and without column pivoting), and for L@, QL and
RQ factorizations (without pivoting only), of a general real or complex rectangular matrix. A function is
also provided for the R(Q) factorization of a real or complex upper trapezoidal matrix. (LAPACK refers to
this as the RZ factorization.)

The factorization functions do not form the matrix) explicitly, but represent it as a product of
elementary reflectors (see Section 3.3.6). Additional functions are provided to generate all or part of @
explicitly if it is required, or to apply @ in its factored form to another matrix (specifically to compute
one of the matrix products QC, QTC, CQ or CQ" with QT replaced by Q" if C' and @ are complex).

Factorize Factorize Factorize Generate Apply Apply
without with (blocked) matrix Q matrix Q 0O (blocked)
pivoting pivoting

QR factorization, f08aec f08bfc f08abc f08afc f08agc f08acc

real matrices

QR factorization, f08bbce f08bcc

real triangular-pentagonal

LQ factorization, f08ahc f08ajc fO8akce

real matrices

QL factorization, f08cec f08cfc f08cgc

real matrices

RQ factorization, f08chc f08cjc f08ckc

real matrices

RQ factorization, fO8bhc f08bkc

real upper trapezoidal matrices

QR factorization, f08asc fO8btc f08apc fO8atc f08auc f08aqc

complex matrices

QR factorization, f08bpc f08bqc

complex triangular-pentagonal

L) factorization, f08avc f08awc f08axc

complex matrices

QL factorization, fO8csc fO8ctc fO8cuc

complex matrices

f08.26 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

RQ factorization, f08cve f08cwc f08cxc
complex matrices

RQ factorization, fO8bve f08bxc
complex upper trapezoidal matrices

To solve linear least squares problems, as described in Sections 2.2.1 or 2.2.3, functions based on the
QR factorization can be used:

real data, full-rank problem fO08aac, f08aec and f0O8agc,
fO08abc and f08acc, fl6yjc
complex data, full-rank problem fO8anc, f08asc and f08auc,
fO8apc and f08aqc, f16zjc
real data, rank-deficient problem fO8bfc*, f16yjc, f08agc
complex data, rank-deficient problem fO8btc*, f16zjc, f08auc

To find the minimum norm solution of under-determined systems of linear equations, as described in
Section 2.2.2, functions based on the L(Q factorization can be used:

real data, full-rank problem fO8ahc*, f16yjc, f08ake
complex data, full-rank problem f08avc*, f16zjc, f08axc

3.1.2.2 Generalized orthogonal factorizations

Functions are provided for the generalized QR and R() factorizations of real and complex matrix pairs.

Factorize
Generalized QR factorization, real matrices f08zec
Generalized R(Q factorization, real matrices f08zfc

Generalized QR factorization, complex matrices | f08zsc

Generalized RQ) factorization, complex matrices | f08ztc

3.1.2.3 Singular value problems

Functions are provided to reduce a general real or complex rectangular matrix A to real bidiagonal form
B by an orthogonal transformation A = QBPT (or by a unitary transformation A = QBP"Y if A is
complex). Different functions allow a full matrix A to be stored conventionally (see Section 3.3.1), or a
band matrix to use band storage (see Section 3.3.4 in the f07 Chapter Introduction).

The functions for reducing full matrices do not form the matrix) or P explicitly; additional functions
are provided to generate all or part of them, or to apply them to another matrix, as with the functions for
orthogonal factorizations. Explicit generation of @) or P is required before using the bidiagonal QR
algorithm to compute left or right singular vectors of A.

The functions for reducing band matrices have options to generate () or P if required.

Further functions are provided to compute all or part of the singular value decomposition of a real
bidiagonal matrix; the same functions can be used to compute the singular value decomposition of a real
or complex matrix that has been reduced to bidiagonal form.

Reduce to Generate Apply Reduce band SVD of SVD of
bidiagonal matrix Q matrix Q matrix to bidiagonal bidiagonal
form or PT or P bidiagonal form (QR form (divide and
form algorithm) conquer)
real matrices fO8kec fO8kfc fO8kgc fO8lec f08mec f08mdc
complex matrices | f08ksc fO8ktc f08kuc f08lsc f08msc

Mark 25 f08.27

Introduction — f08 NAG Library Manual

Given the singular values, f08flc is provided to compute the reciprocal condition numbers for the left or
right singular vectors of a real or complex matrix.

To compute the singular values and vectors of a rectangular matrix, as described in Section 2.3, use the
following sequence of calls:

Rectangular matrix (standard storage)

real matrix, singular values and vectors f08kec, fO8kfc*, f08mec
complex matrix, singular values and vectors fO8ksc, f08ktc*, f08msc

Rectangular matrix (banded)

real matrix, singular values and vectors f08lec, f08kfc, f08mec
complex matrix, singular values and vectors fO8lsc, fO8ktc, f08msc

To use the singular value decomposition to solve a linear least squares problem, as described in
Section 2.4, the following functions are required:

real data fl6yac, fO8kec, fO8kfc,
fO8kgc, f08mec
complex data fl6zac, f08ksc, fO8ktc,

f08kuc, f08msc

3.1.2.4 Generalized singular value decomposition

Functions are provided to compute the generalized SVD of a real or complex matrix pair (A, B) in upper
trapezoidal form. Functions are also provided to reduce a general real or complex matrix pair to the
required upper trapezoidal form.

Reduce to Generalized SVD
trapezoidal form | of trapezoidal form

real matrices fO8vec f08yec

complex matrices | f08vsc f08ysc

Functions are provided for the full CS decomposition of orthogonal and unitary matrices expressed as 2
by 2 partitions of submatrices. For real orthogonal matrices the CS decomposition is performed by
fO8rac, while for unitary matrices the equivalent function is f08rnc.

3.1.2.5 Symmetric eigenvalue problems

Functions are provided to reduce a real symmetric or complex Hermitian matrix A to real tridiagonal
form T by an orthogonal similarity transformation A = QT'Q" (or by a unitary transformation
A= QTQM if A is complex). Different functions allow a full matrix A to be stored conventionally (see
Section 3.3.1 in the f07 Chapter Introduction) or in packed storage (see Section 3.3.2 in the f07 Chapter
Introduction); or a band matrix to use band storage (see Section 3.3.4 in the f07 Chapter Introduction).

The functions for reducing full matrices do not form the matrix) explicitly; additional functions are
provided to generate (), or to apply it to another matrix, as with the functions for orthogonal
factorizations. Explicit generation of () is required before using the QR algorithm to find all the
eigenvectors of A; application of () to another matrix is required after eigenvectors of 7' have been
found by inverse iteration, in order to transform them to eigenvectors of A.

The functions for reducing band matrices have an option to generate () if required.

f08.28 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

Reduce to | Generate | Apply
tridiagonal | matrix Q | matrix Q
form
real symmetric matrices fO8fec fO8fte f08fgc
real symmetric matrices (packed storage) f08gec f08gfc f08ggc
real symmetric band matrices fO8hec
complex Hermitian fO8fsc f08ftc f08fuc
matrices
complex Hermitian matrices (packed storage) f08gsc f08gtc f08guc
complex Hermitian band matrices fO8hsc

Given the eigenvalues, fO8flc is provided to compute the reciprocal condition numbers for the
eigenvectors of a real symmetric or complex Hermitian matrix.

A variety of functions are provided to compute eigenvalues and eigenvectors of the real symmetric
tridiagonal matrix 7, some computing all eigenvalues and eigenvectors, some computing selected
eigenvalues and eigenvectors. The same functions can be used to compute eigenvalues and eigenvectors
of a real symmetric or complex Hermitian matrix which has been reduced to tridiagonal form.

Eigenvalues and eigenvectors of real symmetric tridiagonal matrices:

The original (non-reduced) matrix is Real Symmetric or Complex Hermitian

all eigenvalues (root-free QR algorithm) f08jfc
all eigenvalues (root-free QR algorithm called by divide-and-conquer) f08jcc or f08jhc
all eigenvalues (RRR) f08jlc
selected eigenvalues (bisection) f08jjc

The original (non-reduced) matrix is Real Symmetric

all eigenvalues and eigenvectors (QR algorithm) fO8jec
all eigenvalues and eigenvectors (divide-and-conquer) fO8jcc or f08jhc
all eigenvalues and eigenvectors (RRR) f08jlc
all eigenvalues and eigenvectors (positive definite case) f08jgc
selected eigenvectors (inverse iteration) fO8jkc

The original (non-reduced) matrix is Complex Hermitian

all eigenvalues and eigenvectors (QR algorithm) f08jsc
all eigenvalues and eigenvectors (divide and conquer) fO8jve
all eigenvalues and eigenvectors (RRR) f08jyc
all eigenvalues and eigenvectors (positive definite case) fO8juc
selected eigenvectors (inverse iteration) f08jxc

The following sequences of calls may be used to compute various combinations of eigenvalues and
eigenvectors, as described in Section 2.7.

Sequences for computing eigenvalues and eigenvectors

Real Symmetric matrix (standard storage)

all eigenvalues and eigenvectors (using divide-and-conquer) fO8fcc
all eigenvalues and eigenvectors (using QR algorithm) fO8fec, fO8ffc*, f08jec

Mark 25 f08.29

Introduction — f08

all eigenvalues and eigenvectors (RRR)
selected eigenvalues and eigenvectors (bisection and inverse iteration)

Real Symmetric matrix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer)

all eigenvalues and eigenvectors (using QR algorithm)

all eigenvalues and eigenvectors (RRR)

selected eigenvalues and eigenvectors (bisection and inverse iteration)

Real Symmetric banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer)
all eigenvalues and eigenvectors (using QQR algorithm)

Complex Hermitian matrix (standard storage)

all eigenvalues and eigenvectors (using divide-and-conquer)

all eigenvalues and eigenvectors (using QR algorithm)

all eigenvalues and eigenvectors (RRR)

selected eigenvalues and eigenvectors (bisection and inverse iteration)
Complex Hermitian matrix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer)

all eigenvalues and eigenvectors (using QR algorithm)

all eigenvalues and eigenvectors (RRR)

selected eigenvalues and eigenvectors (bisection and inverse iteration)

Complex Hermitian banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer)
all eigenvalues and eigenvectors (using QR algorithm)

3.1.2.6 Generalized symmetric-definite eigenvalue problems

NAG Library Manual

f08fec, f08fgc, 108jlc
fO8fec, f08fgc, 08jjc, f08jkc*

f08gcc

f08gec, f08gfc and f08jec
f08gec, f08ggc, f08jlc
f08gec, f08ggc, f08jjc,
f08jkc*

fO8hcc
fO8hec*, f08jec

f08fqc

fO8fsc, f08ftc*, f08]sc
fO8fsc, f08fuc, f08]yc

f08fsc, f08fuc, f08jjc, fO8jxc*

f08gqc

f08gsc, f08gtc*, f08jsc
f08gsc, f08guc and f08jyc
f08gsc, f08guc, f08jjc,
fO8jxc*

fO8hqc
fO8hsc*, f08jsc

Functions are provided for reducing each of the problems Ax = ABx, ABx = Az or BAx = Ax to an
equivalent standard eigenvalue problem Cy = A\y. Different functions allow the matrices to be stored
either conventionally or in packed storage. The positive definite matrix B must first be factorized using a
function from Chapter f07. There is also a function which reduces the problem Az = ABx where A and
B are banded, to an equivalent banded standard eigenvalue problem; this uses a split Cholesky

factorization for which a function in Chapter fO8 is provided.

Reduce to Reduce to

standard problem

standard problem
(packed storage)

Reduce to
standard problem
(band matrices)

real symmetric matrices f08sec fO8tec

fO8uec

complex Hermitian matrices | f08ssc fO8tsc

fO8usc

The equivalent standard problem can then be solved using the functions discussed in Section 3.1.2.5. For
example, to compute all the eigenvalues, the following functions must be called:

108.30

Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

real symmetric-definite problem f07fdc, f08sec*, f08fec,

fogjfe

real symmetric-definite problem, packed storage f07gdc, f08tec*, f08gec,
fogjfec

real symmetric-definite banded problem fO8ufc*, fO8uec*, f08hec,
f08jfc

complex Hermitian-definite problem
complex Hermitian-definite problem, packed storage

f07frc, f08ssc*, f08fsc, fO8jfc
f07grc, fO8tsc*, f08gsc,
f08jfc

fO8utc*, f08usc*, f08hsc,
fO8jfec

complex Hermitian-definite banded problem

If eigenvectors are computed, the eigenvectors of the equivalent standard problem must be transformed
back to those of the original generalized problem, as indicated in Section 2.8; functions from Chapter
f16 may be used for this.

3.1.2.7 Nonsymmetric eigenvalue problems

Functions are provided to reduce a general real or complex matrix A to upper Hessenberg form H by an
orthogonal similarity transformation A = QHQ" (or by a unitary transformation A = QHQ" if A is
complex).

These functions do not form the matrix @) explicitly; additional functions are provided to generate (), or
to apply it to another matrix, as with the functions for orthogonal factorizations. Explicit generation of ()
is required before using the QR algorithm on H to compute the Schur vectors; application of @ to
another matrix is needed after eigenvectors of H have been computed by inverse iteration, in order to
transform them to eigenvectors of A.

Functions are also provided to balance the matrix before reducing it to Hessenberg form, as described in
Section 2.14.6. Companion functions are required to transform Schur vectors or eigenvectors of the
balanced matrix to those of the original matrix.

Reduce to Generate Apply Balance Back-
Hessenberg matrix Q matrix Q transform
form vectors after
balancing
real matrices f08nec f08nfc fO8ngc fO8nhc fO8njc
complex matrices | f08nsc fO8ntc f08nuc fO8nvc fO8nwce

Functions are provided to compute the eigenvalues and all or part of the Schur factorization of an upper
Hessenberg matrix. Eigenvectors may be computed either from the upper Hessenberg form by inverse
iteration, or from the Schur form by back-substitution; these approaches are equally satisfactory for
computing individual eigenvectors, but the latter may provide a more accurate basis for a subspace
spanned by several eigenvectors.

Additional functions estimate the sensitivities of computed eigenvalues and eigenvectors, as discussed in
Section 2.14.5.

Eigenvalues and
Schur factorization

Eigenvectors from
Hessenberg form

Eigenvectors from
Schur factorization

Sensitivities of
eigenvalues and

(QR algorithm) (inverse iteration) eigenvectors
real matrices fO8pec fO8pke f08qke f08qlc
complex matrices | f08psc f08pxc f08qxc f08qyc

Finally functions are provided for reordering the Schur factorization, so that eigenvalues appear in any
desired order on the diagonal of the Schur form. The functions f08qfc and f08qtc simply swap two
diagonal elements or blocks, and may need to be called repeatedly to achieve a desired order. The

Mark 25 f08.31

Introduction — f08 NAG Library Manual

functions f08qgc and f08quc perform the whole reordering process for the important special case where
a specified cluster of eigenvalues is to appear at the top of the Schur form; if the Schur vectors are
reordered at the same time, they yield an orthonormal basis for the invariant subspace corresponding to
the specified cluster of eigenvalues. These functions can also compute the sensitivities of the cluster of
eigenvalues and the invariant subspace.

Reorder Reorder

Schur factorization | Schur factorization,
find basis for invariant
subspace and estimate

sensitivities
real matrices f08qfc f08qgc
complex matrices | f08qtc f08quc

The following sequences of calls may be used to compute various combinations of eigenvalues, Schur
vectors and eigenvectors, as described in Section 2.11:

real matrix, all eigenvalues and Schur factorization fO8nec, fO8nfc*, f08pec

real matrix, all eigenvalues and selected eigenvectors fO8nec, f08ngc, fO8pec,
fO8pke

real matrix, all eigenvalues and eigenvectors (with balancing) f08nhc*, f08nec, f08nfc,
fO8njc, f08pec, f08pke

complex matrix, all eigenvalues and Schur factorization fO8nsc, f08ntc*, f08psc

complex matrix, all eigenvalues and selected eigenvectors fO8nsc, f08nuc, f08psc,
fO8pxc*

complex matrix, all eigenvalues and eigenvectors (with balancing) f08nvc*, f08nsc, f08ntc,

f08nwc, f08psc, f08pxc

3.1.2.8 Generalized nonsymmetric eigenvalue problems

Functions are provided to reduce a real or complex matrix pair (A, Ry), where A; is general and Ry is
upper triangular, to generalized upper Hessenberg form by orthogonal transformations A; = QHZ],
Ry = QRZT, (or by unitary transformations A; = Q;HZ!, R = Q,R,Z}!, in the complex case). These
functions can optionally return @; and/or Z;. Note that to transform a general matrix pair (A, B) to the
form (A;, Ry) a QR factorization of B (B = QR,)) should first be performed and the matrix A; obtained
as A = QTA (see Section 3.1.2.1 above).

Functions are also provided to balance a general matrix pair before reducing it to generalized Hessenberg

form, as described in Section 2.14.8. Companion functions are provided to transform vectors of the
balanced pair to those of the original matrix pair.

Reduce to Balance | Backtransform
generalized vectors after
Hessenberg form balancing
real matrices fO8wec fO8whe | f08wjc
complex matrices | f08wsc f08wve | f08wwc

Functions are provided to compute the eigenvalues (as the pairs («, 3)) and all or part of the generalized
Schur factorization of a generalized upper Hessenberg matrix pair. Eigenvectors may be computed from
the generalized Schur form by back-substitution.

Additional functions estimate the sensitivities of computed eigenvalues and eigenvectors.

f08.32 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

Eigenvalues and Eigenvectors from | Sensitivities of
generalized Schur | generalized Schur | eigenvalues and
factorization factorization eigenvectors
(QZ algorithm)

real matrices fO8xec fO8yke fO8ylc

complex matrices | fO8xsc fO8yxc f08yyc

Finally, functions are provided for reordering the generalized Schur factorization so that eigenvalues
appear in any desired order on the diagonal of the generalized Schur form. f08yfc and fO8ytc simply
swap two diagonal elements or blocks, and may need to be called repeatedly to achieve a desired order.
fO8ygc and f08yuc perform the whole reordering process for the important special case where a specified
cluster of eigenvalues is to appear at the top of the generalized Schur form; if the Schur vectors are
reordered at the same time, they yield an orthonormal basis for the deflating subspace corresponding to
the specified cluster of eigenvalues. These functions can also compute the sensitivities of the cluster of
eigenvalues and the deflating subspace.

Reorder generalized Schur | Reorder generalized Schur
factorization factorization, find basis for
deflating subspace and
estimate sensitivites

real matrices f08yfc f08ygc

complex matrices | f08ytc fO8yuc

The following sequences of calls may be used to compute various combinations of eigenvalues,
generalized Schur vectors and eigenvectors

real matrix pair, all eigenvalues (with balancing) f08aec, f08agc (or f08abc,
f08acc), f08wec, f08whc,
fO8xec*

real matrix pair, all eigenvalues and generalized Schur factorization f08aec, f08afc, f08agc (or
f08abc, f08acc), f08wec,
fO8xec

real matrix pair, all eigenvalues and eigenvectors (with balancing) flé6gfec, fl6ghc, f08aec,

fO8afc, f08agc (or f08abc,
f08acc), f08wec, f08whc,
fO8xec, f08ykc*, f08wijc

complex matrix pair, all eigenvalues (with balancing) f08asc, f08auc (or f08apc,
f08aqc), f08wsc, f08wvc,
fO8xsc*

complex matrix pair, all eigenvalues and generalized Schur factorization f08asc, fO8atc, f08auc (or
f08apc, f08aqc), f08wsc,
fO8xsc

complex matrix pair, all eigenvalues and eigenvectors (with balancing) fl6tfc, f16thc, f08asc, fO8atc,
f08auc (or f08apc, f08aqc),
f08wsc, f08wvc, f08xsc,
fO8yxc*, f08wwc

3.1.2.9 The Sylvester equation and the generalized Sylvester equation

Functions are provided to solve the real or complex Sylvester equation AX + XB = C, where A and B
are upper quasi-triangular if real, or upper triangular if complex. To solve the general form of the
Sylvester equation in which A and B are general square matrices, A and B must be reduced to upper
(quasi-) triangular form by the Schur factorization, using functions described in Section 3.1.2.7. For
more details, see the documents for the functions listed below.

Mark 25 f08.33

Introduction — f08 NAG Library Manual

Solve the Sylvester equation

real matrices f08qhc

complex matrices | f08qvc

Functions are also provided to solve the real or complex generalized Sylvester equations
AR—-LB=C, DR-LE=F,

where the pairs (A, D) and (B, E) are in generalized Schur form. To solve the general form of the
generalized Sylvester equation in which (A, D) and (B, E) are general matrix pairs, (A, D) and (B, E)
must first be reduced to generalized Schur form.

Solve the generalized Sylvester equation

real matrices f08yhc

complex matrices | fO08yvc

3.2 NAG Names and LAPACK Names

The functions may be called either by their NAG short names or by their NAG long names which
contain their double precision LAPACK names.

References to Chapter fO8 functions in the manual normally include the LAPACK double precision
names, for example nag dgeqrf (f08aec). The LAPACK routine names follow a simple scheme. Each
name has the structure xyyzzz, where the components have the following meanings:

— the initial letter x indicates the data type (real or complex) and precision:

s — real, single precision
d - real, double precision
¢ — complex, single precision
z — complex, double precision

— the second and third letters yy indicate the type of the matrix A or matrix pair (A, B) (and in some
cases the storage scheme):

bd - bidiagonal

di - diagonal

gb — general band

ge — general

gg — general pair (B may be triangular)
hb - (complex) Hermitian band

he — Hermitian

hg - generalized upper Hessenberg

hp - Hermitian (packed storage)

hs — upper Hessenberg

op — (real) orthogonal (packed storage)
or — (real) orthogonal

pt — symmetric or Hermitian positive definite tridiagonal

f08.34 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

sb — (real) symmetric band

sp — symmetric (packed storage)

st — (real) symmetric tridiagonal

sy — symmetric

tg — triangular pair (one may be quasi-triangular)
tp — triangular-pentagonal

tr — triangular (or quasi-triangular)

un — (complex) unitary
up — (complex) unitary (packed storage)
— the last three letters zzz indicate the computation performed. For example, qrf is a Q)R factorization.

Thus the function nag_dgeqrf performs a QR factorization of a real general matrix; the corresponding
function for a complex general matrix is nag_zgeqrf.

3.3 Matrix Storage Schemes
In this chapter the following storage schemes are used for matrices:
— conventional storage in a two-dimensional array;
— packed storage for symmetric or Hermitian matrices;
— packed storage for orthogonal or unitary matrices;
— band storage for general, symmetric or Hermitian band matrices;

— storage of bidiagonal, symmetric or Hermitian tridiagonal matrices in two one-dimensional
arrays.

These storage schemes are compatible with those used in Chapters f07 and f16, but different schemes for
packed, band and tridiagonal storage are used in a few older functions in Chapters 01, f02, f03 and f04.

3.3.1 Conventional storage

Please see Section 3.3.1 in the f07 Chapter Introduction for full details.

3.3.2 Packed storage
Please see Section 3.3.2 in the f07 Chapter Introduction for full details.

3.3.3 Band storage
Please see Section 3.3.4 in the f07 Chapter Introduction for full details.

3.3.4 Tridiagonal and bidiagonal matrices

A symmetric tridiagonal or bidiagonal matrix is stored in two one-dimensional arrays, one of length n
containing the diagonal elements, and one of length n — 1 containing the off-diagonal elements. (Older
functions in Chapter 02 store the off-diagonal elements in elements 2 : n of a vector of length n.)

3.3.5 Real diagonal elements of complex matrices

Please see Section 3.3.6 in the f07 Chapter Introduction for full details.

3.3.6 Representation of orthogonal or unitary matrices

A real orthogonal or complex unitary matrix (usually denoted @) is often represented in the NAG C
Library as a product of elementary reflectors — also referred to as elementary Householder matrices
(usually denoted H;). For example,

Mark 25 f08.35

Introduction — f08 NAG Library Manual

Q= HH,---Hj.

You need not be aware of the details, because functions are provided to work with this representation,
either to generate all or part of Q explicitly, or to multiply a given matrix by @ or QT (Q" in the
complex case) without forming @ explicitly.

Nevertheless, the following further details may occasionally be useful.

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix of the form
H=1-70" (4)

where 7 is a scalar, and v is an n-element vector, with |7]*||v]|3 = 2 x Re(7); v is often referred to as the
Householder vector. Often v has several leading or trailing zero elements, but for the purpose of this
discussion assume that H has no such special structure.

There is some redundancy in the representation (4), which can be removed in various ways. The
representation used in Chapter f08 and in LAPACK (which differs from those used in some of the
functions in Chapters f01, f02 and f04) sets v; = 1; hence v; need not be stored. In real arithmetic,
1 <7 <2, except that 7 = 0 implies H = I.

In complex arithmetic, 7 may be complex, and satisfies 1 < Re(7) <2 and |7 — 1] < 1. Thus a complex
H is not Hermitian (as it is in other representations), but it is unitary, which is the important property.
The advantage of allowing 7 to be complex is that, given an arbitrary complex vector x, H can be
computed so that

H%"z = 3(1,0,...,0)"

with real (3. This is useful, for example, when reducing a complex Hermitian matrix to real symmetric
tridiagonal form, or a complex rectangular matrix to real bidiagonal form.

3.4 Argument Conventions
3.4.1 Option arguments

In addition to the order argument of type Nag OrderType, most functions in this Chapter have one or
more option arguments of various types; only options of the correct type may be supplied.

For example,

nag_dsytrd(Nag_RowMajor,Nag_Upper,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, m or n) to be passed as zero, in which case
the computation (or part of it) is skipped. Negative dimensions are regarded as an error.

f08.36 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

4 Decision Trees

The following decision trees are principally for the computation (general purpose) functions.

4.1

Tree 1: Real Symmetric Eigenvalue Problems

General Purpose Functions (eigenvalues and eigenvectors)

Are eigenvalues only
required?

Are all the eigenvalues

yes

required?

yes

Is A tridiagonal?

el

no

no

fO8jcc or 108jfc
|no
Is A band matrix? (fO8hec and f08jfc) or
yes fO8hce
oo
Is one triangle of A stored as (f08gec and f08jfc) or
a linear array? yes f08gcc

|1’10

(f08fec and f08jfc) or f08fac

or f08fcc

| Is A tridiagonal?

|n0

f08jic

|Is A a band matrix?

|n0

f08hec and fO8jjc |

Is one triangle of A stored as
a linear array?

el

f08gec and f08jjc |

|1’10

(f08fec and f08jjc) or f()8ﬂac|

Are all eigenvalues and
eigenvectors required?

Is A tridiagonal?

f08jec, f08jcc, f08jhc or

no

[0

yes yes f0gjle
|no
Is A a band matrix? (fO8hec and f08jec) or
) yes fO8hce

Is one triangle of A stored as

a linear array?

yes

(f08gec, f08gfc and f08jec)
or f08gcc

|1’10

(f08fec, f08ffc and f08jec) or
fO8fac or f08fcc

Is A tridiagonal?

yes

|1’10

f08jjc and fO8jkc

Is one triangle of A stored as
a linear array?

yes

f08gec, f08jjc, f08jkc and
f08ggc

[0

(f08fec, f08jjc, fO8jkc and
f08fgc) or f08fbe

Mark 25

108.37

Introduction — f08

Tree 2: Real Generalized Symmetric-definite Eigenvalue Problems

NAG Library Manual

Are eigenvalues only
required?

yes

Are all the eigenvalues
required?

yes

Are A and B band matrices?

yes

fO8ufc, f08uec, f08hec and
f08jfc

no

Are A and B band matrices?

|1’10

Are A and B stored with one
triangle as a linear array?

yes

f07gdc, fO8tec, f08gec and
f08jfc

|Il0

f07fdc, f08sec, f08fec and
f08jfc

|no

yes

fO8ufc, f08uec, f08hec and
08jjc

Are A and B stored with one

f07gdc, f08tec, f08gec and

triangle as a linear array? yes f08jjc
oo
f07fdc, f08sec, f08gec and
08jjc
no
Are all eigenvalues and Are A and B stored with one f07gdc, fO8tec, f08gec,
eigenvectors required? yes |triangle as a linear array? yes [f08gfc, f08jec and fl6plc

no

Are A and B band matrices?

no

f07fdc, f08sec, f08fec,
f08ffc, f08jec and fl6yjc

|Il()

Are A and B stored with one
triangle as a linear array?

yes

f08ufc, fO8uec, fO8hec,
fO8jkc and fl6yjc

[0

f07fdc, f08sec, fO8fec,
f08jjc, f08jkc, f08fgc and
fl6yjc

yes

f07gdc, f08tec, f08gec,
f08jjc, f08jke, f08ggc and
fléple

Note: the functions for band matrices only handle the problem Az = ABz; the other functions handle all
three types of problems (Ax = A\Bx, ABx = Az or BAxz = A\z) except that, if the problem is BAz = A\x
and eigenvectors are required, f16phc must be used instead of fl6plc and fl6yfc instead of fl6yjc.

108.38

Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK)

Tree 3: Real Nonsymmetric Eigenvalue Problems

|Are eigenvalues required?

|E|IS A an upper Hessenberg matrix?

Introduction — f08

yes

no

no

f08pec

f08nac or f08nbc or (f08nhc, f08nec and
f08pec)

Is the Schur factorization of A required? IF' Is A an upper Hessenberg matrix?

yes

fO8pec

no

no

f08nbc or (f08nec, f08nfc, f08pec or
f08njc)

Are all eigenvectors required?

IW' Is A an upper Hessenberg matrix?

yes

fO8pec or f08qkc

no

Is A an upper Hessenberg matrix?

no

fO08nhc, f08nec, f08pec, f08pke, f08ngc
or f08njc

| yes

no

f08nac or f08nbc or (f08nhc, f08nec,
fO8nfc, f08pec, f08qke or f08njc)

fO8pec or f08pke

Tree 4: Real Generalized Nonsymmetric Eigenvalue Problems

Are eigenvalues only required?

Are A and B in generalized upper

@

ye

Hessenberg form?

fO8xec

no

no

fO8whe, (f08aec and f08agc or f08abc
and f08acc), f08wec and f08xec

Is the generalized Schur factorization of
A and B required?

Are A and B in generalized upper

7]

ye

Hessenberg form?

no

Are A and B in generalized upper
Hessenberg form?

3

|I10

f08whc, (f08aec and f08agc or f08abc
and f08acc), fl6qhc, fl16qfc, fO8afc,
f08wec, f08xec, f08ykc and fO8wjc

Mark 25

no

(f08aec and f08agc or f08abc and
fO8acc), fl6ghc, flo6qgfc, f08afc, fO8wec,

f08xec

f08xec and f08yke

f08xec and f08yke

108.39

Introduction — f08

Tree 5: Complex Hermitian Eigenvalue Problems

NAG Library Manual

Are eigenvalues only
required?

yes

Are all the eigenvalues
required?

yes

Is A a band matrix?

yes

(f08hsc and f08jfc) or
fO8hqc

no

no

|1’10

Is one triangle of A stored as

a linear array?

yes

(f08gsc and f08jfc) or
f08gqc

|Il0

| (08fse and f08jfe) or O8fge]|

Is A a band matrix?

yes

fOshsc and fO8jic |

|1’10

Is one triangle of A stored as
a linear array?

[0

fO8fsc and f08jjc

el

f8gsc and M8jic |

Are all eigenvalues and
eigenvectors required?

yes

Is A a band matrix?

(fO8hsc and f08jsc) or

yes

fO8hqc

no

|1’10

Is one triangle of A stored as
a linear array?

(f08gsc, f08gtc and f08jsc)

yes

or f08gqc

|1’10

(f08fsc, f08ftc and f08jsc) or
fO8fqc

Is one triangle of A stored as
a linear array?

f08gsc, f08jjc, f08jxc and
f08guc

no

f08fsc, f08jjc, fO8jxc and
f08fuc

Tree 6: Complex Generalized Hermitian-definite Eigenvalue Problems

Are eigenvalues only
required?

yes

Are all eigenvalues required?

Are A and B stored with one

1%}

ye

triangle as a linear array?

yes

f07gre, f08tsc, f08gsc and
f08jfc

no

no

f07frc, f08ssc, f08fsc and
f08jfc

Are A and B stored with one

f07grc, f08tsc, f08gsc and

triangle as a linear array? yes f08jjc
no
f07frc, f08ssc, f08gsc and
f08jjc
no
Are all eigenvalues and Are A and B stored with one f07gre, f08tsc, f08gsc,
eigenvectors required? yes |triangle as a linear array? yes f08gtc and f16psc

no

Are A and B stored with one
triangle as a linear array?

no

f07frc, f08ssc, f08fsc, f08ftc,
f08jsc and fl6zjc

no

f07frc, f08ssc, f08fsc, f08jjc,
fO8jxc, f08fuc and f16zjc

108.40

yes

f07grc, f08tsc, f08gsc,
f08jjc, f08jxc, f08guc and
fl6slc

Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

Tree 7: Complex non-Hermitian Eigenvalue Problems

|Are eigenvalues only required? |E|IS A an upper Hessenberg matrix? w f08psc
no
| f08nvc, f08nsc and fO8psc |
no
|Is the Schur factorization of A required? IE' Is A an upper Hessenberg matrix? |W| f08psc
no
| fO8nsc, f08ntc, fO8psc and f08nwc |
no
|Are all eigenvectors required? IE' Is A an upper Hessenberg matrix? |E| fO8psc and f08qxc
no
f08nvc, f08nsc, f08ntc, f08psc, f08qxc
and f08nwc
no
Is A an upper Hessenberg matrix? |W| fO8psc and fO8pxc
no
f08nvc, f08nsc, f08psc, f08pxc, f08nuc
and f08nwc

Tree 8: Complex Generalized non-Hermitian Eigenvalue Problems

Are eigenvalues only required? fO8xsc

Are A and B in generalized upper
Hessenberg form? yes

©

ye

no

fO8wvc, (f08asc and f08auc or f08apc
and f08aqc), f08wsc and f08xsc

no

A and B required? yes | Hessenberg form? f08xsc

©

Is the generalized Schur factorization of Are A and B in generalized upper
yes

no

(f08asc and f08auc or f08apc and
f08aqc), fl6the, fl6tfe, f08atc, f08wsc,
f08xsc and fO8yxc

no

Are A and B in generalized upper
yes

Hessenberg form? f08xsc and f08yxc

o
fO8wve, (f08asc and f08auc or f08apc

and f08aqc), fl6the, fl6tfe, fO8atc,
fO8wsc, f08xsc, f08yxc and f08wwce

Mark 25 f08.41

Introduction — f08 NAG Library Manual

4.2 General Purpose Functions (singular value decomposition)

Tree 9
Is A a complex matrix? |—|Is A banded? |—| f08lsc and f08msc |
yes yes
oo
|Are singular values only required? |E| fO8ksc and f08msc |
oo
| fO8ksc, fO8ktc and f08msc |
no
|Is A bidiagonal? |—| f08mec |
yes
[no
|Is A banded? |—| fO8lec and f08mec |
yes
oo
|Are singular values only required? |E| fO8kec and f08mec |
|n0

| fO8kec, f08kfc and f08mec |

5 Functionality Index

Backtransformation of eigenvectors from those of balanced forms,

COMPIEX MALITX .vvieeiiieeiiieeeiieeeeitteeiee e ettt esbeeesbeeestbeesanbeeeesbeeensseeansseensseeeasseeennes nag_zgebak (f08nwc)

TEAL TNALITX .tiieiiiieitieeeitee ettt e ettt e et e e et e e et e et eeetteeeataeesataeesaseeeanseeesnseessseessseenns nag_dgebak (f08njc)
Backtransformation of generalized eigenvectors from those of balanced forms,

1670)1010] 1o @ 11T 11) QUSSR PUSPUPPRRN nag_zggbak (f08wwc)

TEAL MNALIIX .oeiivvieeiiieiciieeeetieeeteeeete e et eeetteeeteeesetaeessteeeasseeessseeansaeesnsseesssseesnseennns nag_dggbak (f08wjc)
Balancing,

complex general MAIIXcceeeriuieeriiiieiiieeiie et e etee et e et e st e et eeesbee e neeeeneeas nag zgebal (f08nvc)

complex general MALTIX PAITcccceieeeeriiiiieeieiiiieeeesteeeeeesnreeessssrreeeesssseesessennes nag_zggbal (f08wvc)

real general MAtTIXccoovviiiiiiiiiiee e e nag_dgebal (f08nhc)

real general MAtrIX PAITcccvieveiieiiiieeiiieeeieeesteeeteeesteeeereeeebeeeeebeeessbeeensseeseenes nag_dggbal (f08whc)

Eigenvalue problems for condensed forms of matrices,
complex Hermitian matrix,
eigenvalues and eigenvectors,
band matrix,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage
..... nag_zhbevd (f08hqc)

all eigenvalues and eigenvectors by root-free QR algorithm nag_zhbev (f08hnc)
all eigenvalues and eigenvectors by root-free QR algorithm or selected eigenvalues and
eigenvectors by bisection and inverse iterationcccceeeeeneen. nag_zhbevx (f08hpc)

general matrix,

all eigenvalues and eigenvectors by a divide-and-conquer algorithm

..... nag_zheevd (f08fqc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage

..... nag_zhpevd (f08gqc)
all eigenvalues and eigenvectors by root-free QR algorithm nag_zheev (f08fnc)
all eigenvalues and eigenvectors by root-free QR algorithm, using packed storage

..... nag_zhpev (f08gnc)
all eigenvalues and eigenvectors by root-free QR algorithm or selected eigenvalues and
eigenvectors by bisection and inverse iterationcccceeeuveennn. nag_zheevx (f08fpc)
all eigenvalues and eigenvectors by root-free QR algorithm or selected eigenvalues and
eigenvectors by bisection and inverse iteration, using packed storage

..... nag_zhpevx (f08gpc)
all eigenvalues and eigenvectors using Relatively Robust Representations or selected
eigenvalues and eigenvectors by bisection and inverse iteration nag_zheevr (f08frc)

f08.42 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

eigenvalues only,
band matrix,
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm
..... nag_zhbev (f08hnc)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm, or selected

eigenvalues by DIiSECiONcccccviiriiiiieiiiiiieecciiee e nag_zhbevx (f08hpc)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm, using
PACKEA STOTAZE .oeevviieiiieeiiie ettt ettt et e et e e e aae e e eeeas nag_zhbevd (f08hqc)

general matrix,
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm
..... nag_zheev (f08fnc)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm, or selected

eigenvalues by DISECIONoccviiviiiieiiiiieiieeciie e nag_zheevx (fO8fpc)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm, or selected
eigenvalues by bisection, using packed sStoragecccccoeevvereennnnn. nag_zhpevx (f08gpc)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm, using
PACKEA STOTAZE ..ovvviieiiiieiiie et eiee et e ete et e et e e ete e e ereeestbeeeeaeeeaeeenes nag_zhpev (f08gnc)
complex upper Hessenberg matrix, reduced from complex general matrix,
eigenvalues and Schur factorizationccccceeeiiieriieiiiiieeiieeee e nag_zhseqr (f08psc)
selected right and/or left eigenvectors by inverse iterationc.cce...... nag_zhsein (f08pxc)

real bidiagonal matrix,
singular value decomposition,

after reduction from complex general MatriXcccooceeveviireerieeenveennne, nag_zbdsqr (f08msc)
after reduction from real general MatriXccccoeeeveiiieiiiieniieeniieeeen, nag_dbdsqr (f08mec)
after reduction from real general matrix, using divide-and-conquer nag_dbdsdc (f08mdc)

real symmetric matrix,
eigenvalues and eigenvectors,
band matrix,

all eigenvalues and eigenvectors by a divide-and-conquer algorithm
..... nag_dsbevd (f08hcc)

all eigenvalues and eigenvectors by root-free QR algorithm nag_dsbev (fO8hac)
all eigenvalues and eigenvectors by root-free QR algorithm or selected eigenvalues and
eigenvectors by bisection and inverse iterationccccceeeeeeveennne. nag_dsbevx (f08hbc)

general matrix,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm
..... nag_dsyevd (fO8fcc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage
..... nag_dspevd (f08gcc)
all eigenvalues and eigenvectors by root-free QR algorithm nag_dsyev (f08fac)
all eigenvalues and eigenvectors by root-free QR algorithm, using packed storage
..... nag_dspev (f08gac)
all eigenvalues and eigenvectors by root-free QR algorithm or selected eigenvalues and
eigenvectors by bisection and inverse iterationcccceeeeveunennn. nag_dsyevx (f08fbc)
all eigenvalues and eigenvectors by root-free QR algorithm or selected eigenvalues and
eigenvectors by bisection and inverse iteration, using packed storage
..... nag_dspevx (f08gbc)
all eigenvalues and eigenvectors using Relatively Robust Representations or selected
eigenvalues and eigenvectors by bisection and inverse iteration nag_dsyevr (f08fdc)
eigenvalues only,
band matrix,
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm
..... nag_dsbev (f08hac)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm, or selected
eigenvalues by DISECIONccccceevviiiiiiiiiiiee e nag_dsbevx (f08hbc)
general matrix,
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm
..... nag_dsyev (f08fac)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm, or selected
eigenvalues by DIiSECIONccceevveiiiieiiiiiiie e nag_dsyevx (f08fbc)

Mark 25 f08.43

Introduction — f08 NAG Library Manual

all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm, or selected

eigenvalues by bisection, using packed storagecccceeeeveeeneennee. nag_dspevx (f08gbc)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm, using
PACKEd STOTAZE .ooovviieiiiieeiiie et nag dspev (f08gac)

real symmetric tridiagonal matrix,
eigenvalues and eigenvectors,
after reduction from complex Hermitian matrix,

all eigenvalues and €IZENVECIOTScccveieriuieeiiieeiiieeiieeeiieeeieeesiee e nag_zsteqr (fO8jsc)
all eigenvalues and eigenvectors, positive definite matrix nag_zpteqr (f08juc)
all eigenvalues and eigenvectors, using divide-and-conquer nag_zstedc (f08jvc)

all eigenvalues and eigenvectors, using Relatively Robust Representations
..... nag_zstegr (f08jyc)

selected eigenvectors by inverse iterationc.cccoceceeeeveeencreeencveennnns nag_zstein (f08jxc)
all eigenvalues and EIZENVECIOTSccccuveeeiiiieeiieeeiieeriee e eeeeeiee e nag_dsteqr (f08jec)
all eigenvalues and eigenvectors, by divide-and-conquerccocueeee. nag_dstedc (f08jhc)
all eigenvalues and eigenvectors, positive definite matrixcccceeennee nag_dpteqr (f08jgc)

all eigenvalues and eigenvectors, using Relatively Robust Representations
..... nag_dstegr (f08jlc)

all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_dstevd (f08jcc)
all eigenvalues and eigenvectors by root-free QR algorithm nag_dstev (f08jac)
all eigenvalues and eigenvectors by root-free QR algorithm or selected eigenvalues and
eigenvectors by bisection and inverse iterationcccceeevvevvereernennenn. nag_dstevx (fO8jbc)
all eigenvalues and eigenvectors using Relatively Robust Representations or selected
eigenvalues and eigenvectors by bisection and inverse iteration nag_dstevr (f08jdc)
selected eigenvectors by inverse iterationccocceevvveeeerireeseeeniueeenne. nag_dstein (f08jkc)
eigenvalues only,
all eigenvalues by root-free QR algorithmccccoeveiiiviiiiiiiiieieeee, nag_dsterf (f08jfc)

all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm
..... nag_dstev (f08jac)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm, or selected

eigenvalues by DISECIONccccoeeviiiiiiiiiiiiiie et nag_dstevx (f08jbc)
selected eigenvalues by DISECHONccceeevviiieriiiiiiiiiiiiieeiceee e nag_dstebz (f08;jjc)

real upper Hessenberg matrix, reduced from real general matrix,
eigenvalues and Schur factorizationcccccceeciieriiiieniieeniie e nag_dhseqr (f08pec)
selected right and/or left eigenvectors by inverse iteration nag_dhsein (f08pkc)

Eigenvalue problems for nonsymmetric matrices,
complex matrix,
all eigenvalues, Schur form, Schur vectors and reciprocal condition numbers
..... nag_zgeesx (f08ppc)

all eigenvalues, Schur form and Schur vectorsccccoevvveviiieiiiieiiiieniens nag_zgees (f08pnc)
all eigenvalues and left/right €iZenVeCctorsccccveviieeriieiniiieeieeeee e nag_zgeev (f08nnc)
all eigenvalues and left/right eigenvectors, plus balancing transformation and reciprocal condition
1010110 oTc) £ USSP nag_zgeevx (f08npc)

real matrix,
all eigenvalues, real Schur form, Schur vectors and reciprocal condition numbers
..... nag_dgeesx (f08pbc)

all eigenvalues, real Schur form and Schur vectorsccccccvviiiniiinninnns nag_dgees (fO8pac)
all eigenvalues and left/right €igenvectorsccccceveevieeeeriiiiieeeriiee e nag_dgeev (f08nac)
all eigenvalues and left/right eigenvectors, plus balancing transformation and reciprocal condition
IIUITIDETS o.vviieiiiee ettt eiiee et ee et e e ettt e et eeenteeeenbeeesaeeesbeesnbaeesnseeeenseeasseesnnseensees nag_dgeevx (f08nbc)
Eigenvalues and generalized Schur factorization,
complex generalized upper Hessenberg formccccovvieeniiieiiiininiienniieeneen. nag_zhgeqz (f08xsc)
real generalized upper Hessenberg formccccoceviiiiiiiiiniiiiieiceee e nag_dhgeqz (f08xec)
General Gauss—Markov linear model,
solves a complex general Gauss—Markov linear model problem nag_zggglm (f08zpc)
solves a real general Gauss—Markov linear model problemcccccecveennenn. nag_dggglm (f08zbc)

f08.44 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

Generalized eigenvalue problems for condensed forms of matrices,
complex Hermitian-definite eigenproblems,
banded matrices,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_zhbgvd (f08uqc)
all eigenvalues and eigenvectors by reduction to tridiagonal form nag_zhbgv (f08unc)
selected eigenvalues and eigenvectors by reduction to tridiagonal form
..... nag_zhbgvx (f08upc)
general matrices,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_zhegvd (f08sqc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, packed storage format
..... nag_zhpgvd (f08tqc)
all eigenvalues and eigenvectors by reduction to tridiagonal form nag_zhegv (f08snc)
all eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format
..... nag_zhpgv (f08tnc)
selected eigenvalues and eigenvectors by reduction to tridiagonal form
..... nag_zhegvx (f08spc)
selected eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format
..... nag_zhpgvx (f08tpc)
real symmetric-definite eigenproblems,
banded matrices,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_dsbgvd (f08ucc)
all eigenvalues and eigenvectors by reduction to tridiagonal form nag_dsbgv (f08uac)
selected eigenvalues and eigenvectors by reduction to tridiagonal form
..... nag_dsbgvx (f08ubc)
general matrices,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_dsygvd (f08scc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, packed storage format
..... nag_dspgvd (f08tcc)
all eigenvalues and eigenvectors by reduction to tridiagonal form nag_dsygv (f08sac)
all eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format
..... nag_dspgv (f08tac)
selected eigenvalues and eigenvectors by reduction to tridiagonal form
..... nag_dsygvx (f08sbc)
selected eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format
..... nag_dspgvx (f08tbc)

Generalized eigenvalue problems for nonsymmetric matrix pairs,
complex nonsymmetric matrix pairs,
all eigenvalues, generalized Schur form, Schur vectors and reciprocal condition numbers
..... nag_zggesx (f08xpc)

all eigenvalues, generalized Schur form and Schur vectorsccccoccveenneen. nag_zgges (f08xnc)
all eigenvalues and left/right €iZenVectorscccoeveeviiieriieeniie e, nag zggev (f08wnc)
all eigenvalues and left/right eigenvectors, plus the balancing transformation and reciprocal
CONAITION NMUMDETS ...eiiieiiiiiiiieeiiieeiie e ettt e ette et e eereeeteeeeteeesebeeestbeeesaaeeseseeans nag_zggevx (f08wpc)
real nonsymmetric matrix pairs,
all eigenvalues, generalized real Schur form and left/right Schur vectors nag_dgges (f08xac)
all eigenvalues, generalized real Schur form and left/right Schur vectors, plus reciprocal condition
TIUITIDETS ..eiiniiieiiiee ettt ettt ettt ettt ettt ettt e st e e st e e sabe e e sttt e nabeeeaabeeenbneesnneean nag_dggesx (f08xbc)
all eigenvalues and left/right eigenvectorscccoceevviiercieenieeeniee e, nag_dggev (f08wac)
all eigenvalues and left/right eigenvectors, plus the balancing transformation and reciprocal
CONAILION NMUMDETS ...eeiiiiiieiiiie ettt et et et see e ste e e beeeebeesaeeeeneaeeneas nag dggevx (f08wbc)
Generalized QR factorization,
COMPLEX MALTICES .oieiiiriiieeeiiieeeeiiiiie e ettt e e e etbeeeeesataeeeeseraeeeessssaeeeessssaeeessnsaeanns nag_ zggqrf (f08zsc)
TEAL MALTICES niviiieeeiiiie e ettt e et te e ettt e e e ettt e e e ettt eeeesnebeeeeeanteeeeseanseeaeeanseeeeanns nag_dggqrf (f08zec)
Generalized R(@) factorization,
COMPIEX MALTICES ..vvieerieeriiieeiiieesiiieeeieestteeertteeetteeebeeesateeesnbeeesnteesnteesnneeesnseeensees nag_zggrqf (f08ztc)
TEAL MALTICES ..viiiiiiiieeeiiiiiieeeiiiie e e et eeeertrteeeestaaeeeessereeeeessssseeessssssaeeesssseesesssseeens nag_dggrqf (f08zfc)

Mark 25 f08.45

Introduction — f08 NAG Library Manual

Generalized singular value decomposition,
after reduction from complex general matrix,

complex triangular or trapezoidal Matrix Paircccccevvveeviieeenieeiiieenieeneens nag ztgsja (f08ysc)
after reduction from real general matrix,

real triangular or trapezoidal matriX Paircccceceveeeeriiiiieeeniiiieeeeiieee e nag_dtgsja (fO8yec)
COMPLEX MALLIX PAIT .eevreeiiiiieeeeiiiieeeeeiiteeeeeiteeee e st eeeessetbeeeessaneeeeessnneeeeeenssnreeas nag_zggsvd (f08vnc)
partitioned orthogonal matrix (CS decomposition)ccceceveeeeiveeeiieeeniieeniiennns nag_dorcsd (fO8rac)
partitioned unitary matrix (CS decompoSItion)ccceccveeeiieeeiiieeniieeenieeenineenns nag_zuncsd (f08rnc)
1Al MALITX PAIT 1uvvieeiiieeeiieeeiiee ettt e et e e eteeeiteeetaeeeteeesteeesntaeeenteeessseessseessseseenas nag dggsvd (f08vac)
reduction of a pair of general matrices to triangular or trapezoidal form,

COMPIEX MALTICES .eeevirererrreiirireirieeiteeeetreeesteesteeessreessseeesssesessseeensseeesseesseens nag_zggsvp (f08vsc)

TEAL MNALIICES .viiiieiiieieiieeeiiieeetiee ettt ettt ettt e sttt e eetbeeessbeeetaeessseesnsaeesnsseensseeenseeas nag_dggsvp (f08vec)

least squares problems,
complex matrices,

apply orthogonal MAtIIXceooiiiiiiiiiiiiiieiiie e nag_zunmrz (fO08bxc)
minimum norm solution using a complete orthogonal factorization nag_zgelsy (f08bnc)
minimum norm solution using the singular value decomposition nag_zgelss (f08knc)

minimum norm solution using the singular value decomposition (divide-and-conquer)
..... nag_zgelsd (f08kqc)

reduction of upper trapezoidal matrix to upper triangular form nag_ztzrzf (f08bvc)
real matrices,

apply orthogonal MAtIIXccccevieiiiieeiiiieeiie ettt e e e nag_dormrz (f08bkc)

minimum norm solution using a complete orthogonal factorization nag_dgelsy (f08bac)

minimum norm solution using the singular value decomposition nag_dgelss (f08kac)

minimum norm solution using the singular value decomposition (divide-and-conquer)
..... nag_dgelsd (fO8kcc)
reduction of upper trapezoidal matrix to upper triangular form nag_dtzrzf (f08bhc)

least squares problems with linear equality constraints,
complex matrices,
minimum norm solution subject to linear equality constraints using a generalized R() factorization
..... nag_zgglse (f08znc)
real matrices,
minimum norm solution subject to linear equality constraints using a generalized R(Q) factorization
..... nag_dgglse (f08zac)

Left and right eigenvectors of a pair of matrices,
complex upper triangular MAtTICESc.eeeeervviireiriiiieeeeriieeeeeireeeeeereeeeeseraeeenes nag_ztgevc (f08yxc)
real quasi-trianguUIar MATICESccveeeevieeriiiieeiieeeiieeeteeeeteeeeteeeetreeesereesraeeereeans nag_dtgeve (f08ykc)

L@ factorization and related operations,
complex matrices,

apply UNItAry MALIIX ooceeoeiiiiiiiieiiiee ettt nag_zunmlq (f08axc)

FACTOTIZATION .i.viieiiiiie ettt et e et e et e e e sabeeessneeensseenns nag_zgelqf (f08avc)

form all or part of unitary mMatrixXcccceecveeeriiieeeiieeiiee et nag_zunglq (f08awc)
real matrices,

apply orthogonal MALIIXcc.eevviieiiiiieniiieiie ettt nag_dormlq (f08akc)

FACTOTIZATION ..eiiiiieiiiieeiiee ettt ettt ettt e st e st e enaee e nag_dgelqf (f08ahc)

form all or part of orthogonal MatriXccceeeeiiiiiiiiiiiieeeiiiie e nag_dorglq (fO8ajc)

Operations on eigenvectors of a real symmetric or complex Hermitian matrix, or singular vectors of a
general matrix,
estimate CONdition NUIMDETScceeeriuiieriiiieiiieeiiieesiie et ee et et e e s e e sbeeeseneeeneeeas nag_ddisna (f08fic)

Operations on generalized Schur factorization of a general matrix pair,
complex matrix,
estimate condition numbers of eigenvalues and/or eigenvectors nag_ztgsna (fO8yyc)
re-order Schur factoriZAtIONccccccieeiiiiieiiieeiiie et nag_ztgexc (f08ytc)
re-order Schur factorization, compute generalized eigenvalues and condition numbers
..... nag_ztgsen (f08yuc)

f08.46 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

real matrix,
estimate condition numbers of eigenvalues and/or eigenvectors nag_dtgsna (f08ylc)
re-order Schur factoriZationcccevciiieiiieeiiie et nag_dtgexc (fO8yfc)
re-order Schur factorization, compute generalized eigenvalues and condition numbers
..... nag_dtgsen (f08ygc)

Operations on Schur factorization of a general matrix,
complex matrix,

compute left and/or right €IgENVECIOrSccvcviieiiieeriieeiieeiie et nag_ztrevc (f08qgxc)
estimate sensitivities of eigenvalues and/or eigenvectorscccccceevveernnenn. nag_ztrsna (f08qyc)
re-order Schur factoriZationccoeceeiiiiiiiiiiiniieee e nag_ztrexc (f08qtc)

re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities
..... nag_ztrsen (f08quc)
real matrix,

compute left and/or right €IgeNVECOrSceevvvieviiiieiiieeeiie et nag_dtreve (f08qkc)
estimate sensitivities of eigenvalues and/or eigenvectorscccoccceevvuene nag_dtrsna (f08qlc)
re-order Schur factoriZationccccocceiiiiiiiiiieeiriie e nag_dtrexc (f08qfc)

re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities
..... nag_dtrsen (f08qgc)

Overdetermined and underdetermined linear systems,
complex matrices,

solves an overdetermined or undetermined complex linear system nag_zgels (f08anc)
real matrices,
solves an overdetermined or undetermined real linear system nag_dgels (f08aac)

Performs a reduction of eigenvalue problems to condensed forms, and related operations,
real rectangular band matrix to upper bidiagonal formccccceviiiiiiiinnnen. nag_dgbbrd (f08lec)

QL factorization and related operations,
complex matrices,

ApPLly UNILATY MALTIX oeooiiieiiieeiieeeiiee et eeieeeeiee et eeetaeeeiaeeeebeeeeaeessaeeeensee e nag_zunmgql (f08cuc)

FACTOTIZALIONvviiiiiiiiiie e ettt e ettt et e e ettt e e e etb e e e e satbbeeeeessbeeeeesssssaesensssaeeans nag_zgeqlf (f08csc)

form all or part of UNItAry MAIXceeeeriiireieiiiie et nag_zungql (f08ctc)
real matrices,

apply orthogonal MALIIXcc..eccvieiiiiieiiiieiieeeriee et e e e e e e e ereeseaeeeaeees nag_dormgql (f08cgc)

FACTOTIZATION 1ueiieiiiieeiie ettt ettt et e et e et e st e et e e e e e nbeeeenseeenbeennees nag_dgeqlf (f08cec)

form all or part of orthogonal MatriXccceecevirviiiiiiiieiiieee e, nag dorgql (f08cfc)

QR factorization and related operations,
complex matrices,
general matrices,

ApPly UNIATY MALTIX eveeeiiieeiiieeiieeeiieeetee et e e eee e eteeeeiee e bee et eeeae e nag_zunmqr (f08auc)
apply unitary matrix, explicitly blockedccccooviiiiiiiiiiiiiiieee, nag zgemgqrt (f08aqc)
FACTOTIZATION .eiiiiiiiiiieiiie ettt nag_zgeqrf (f08asc)
factorization,

with column pivoting, using BLAS-3cccoiiiiiiiiiieeeee e nag_zgeqp3 (f08btc)
factorization, explicitly blockedcccoviiiiiiiiiiiiiiiiie e nag zgeqrt (f08apc)
factorization, with column pivotingccceeeeeeriiiiiiiienie e nag zgeqpf (f08bsc)
form all or part of UNItary MatriXcccccceeeiiiieeiiiiiireeinciieeeernieeeeeiveeens nag_zungqr (f08atc)

triangular-pentagonal matrices,

apply UNItAry MALIIX ...oeeiiiiiiieeiiiee et e e e e e e nag_ztpmgqrt (f08bqc)
FACTOTIZATION ..eiiiiiiieiiiie ettt ettt ettt et e et eesateeeeeteeesaneeennsee e nag_ztpqrt (fO8bpc)

real matrices,
general matrices,

apply orthogonal MAatriXcccceviiiiiiiiiiiiiee e nag_dormqr (f08agc)
apply orthogonal matrix, explicitly blockedccccoeviiiiiiiiiiiiiiiinenee, nag_dgemqrt (f08acc)
factorization,

with column pivoting, using BLAS-3ccccooiiiiiiiiieece e nag_dgeqp3 (f08bfc)
factorization, orthogonal MatriXcccccceeviiieriiiiniiieeiiie e nag dgeqrf (f08aec)
factorization, with column pivOtingcccoeveeiiiiiiiiiiiiniieieeeeeeeee nag_dgeqpf (f08bec)

Mark 25 f08.47

Introduction — f08 NAG Library Manual

factorization, with explicit BIOCKINGcccoiiviiiiiiiiiiiie e, nag_dgeqrt (f08abc)
form all or part of orthogonal MAatriXccccceverciiiiiiiieniiieriieeiee e nag_dorgqr (f08afc)
triangular-pentagonal matrices,
apply orthogonal MAtriXcccceeciieriiieiiieeiiie et nag_dtpqrt (f08bbc)
FACLOTIZAtION ..uvviiiiiiiiiice ettt e et e e e et e e e e satbaeeeesaebaeeeas nag_dtpmqrt (f08bcc)
Reduction of a pair of general matrices to generalized upper Hessenberg form,
orthogonal reduction, real MAatriCesccccveeeviiiiiiieiiie et nag_dgghrd (f08wec)
unitary reduction, COMPIEX MALIICES ...cccvvrereiiieriiireeiieeeiieerieeeriieeeireesreeeseeeenes nag_zgghrd (f08wsc)

Reduction of eigenvalue problems to condensed forms, and related operations,
complex general matrix to upper Hessenberg form,

apply orthogonal MAtIiXc.ccccceieiiieiiiieeiieeeieeeeiee e e e nag_zunmhr (f08nuc)

form orthogonal MALIIXcceeeeeiieiiiieiiie et nag_zunghr (f08ntc)

reduce to Hessenberg fOrmoccoeveiiiiiiiieiiie e nag_zgehrd (f08nsc)
complex Hermitian band matrix to real symmetric tridiagonal form nag_zhbtrd (fO8hsc)
complex Hermitian matrix to real symmetric tridiagonal form,

aApPly UNIATY MALIIX ..oiiiiiiiiiiieiiiee ettt e e ettt e e et ee e e neee e e e e e nag_zunmtr (f08fuc)

apply unitary matrix, packed StOragecccccocvveriiieeiiiieeniieeiiee e nag_zupmtr (f08guc)

fOrm UNTLATY MAIIX .oeeoiieiiieeeiieeeiie et eeetee et e e et eetae e tee e ebeeeebeeeenbeeenes nag_zungtr (fO8ftc)

form unitary matrix, packed StOTageccococveviiiiiniiieiiiieee e nag_zupgtr (f08gtc)

reduce to tridiagonal fOrmcccoeoiiiiiiiiiiii e nag_zhetrd (f08fsc)

reduce to tridiagonal form, packed Storagecccocovvvevriiiieiniciieeeeiienn nag_zhptrd (f08gsc)
complex rectangular band matrix to real upper bidiagonal form nag_zgbbrd (f08lsc)
complex rectangular matrix to real bidiagonal form,

aApPly UNIATY MALIIX .eviiiiiieiiie ettt ettt e e e et e e ebeeeebee e e e nag_zunmbr (f08kuc)

fOrm UNTLATY MAIX ..eeieitiiiiiiieiee ettt et e et e e eeeaeees nag_zungbr (fO8ktc)

reduce to bidiagonal fOrmccccooiiiiiiiiiiiiiiiie e nag_zgebrd (f08ksc)
real general matrix to upper Hessenberg form,

apply orthogonal MAtIIXccceeveiiieriiireiiieeiiee ettt e e e e e eteeeeaae e nag_dormhr (f08ngc)

form orthoonal MALIIXcececiiieiiieiiie e e nag_dorghr (f08nfc)

reduce to Hessenberg formccociiiiiiiiiiiiiiiiic e nag_dgehrd (f08nec)
real rectangular matrix to bidiagonal form,

apply orthogonal MAtIIXccceeeeiieiciiieiiie et et eeree et eeeveeesreeeseaee e nag_dormbr (f08kgc)

form orthogonal MALIIXceceeiiiiiiieiiie et e nag_dorgbr (fO8kfc)

reduce to bidiagonal fOrmccccoeiiiiiiiiiiiiiii e nag_dgebrd (f08kec)
real symmetric band matrix to symmetric tridiagonal formcccocceeernenne. nag_dsbtrd (f08hec)
real symmetric matrix to symmetric tridiagonal form,

apply orthogonal MAtIIXcccceeerciiiiieeiiiiiee e eriete e e e e e rire e e e eearaeeenes nag_dormtr (f08fgc)

apply orthogonal matrix, packed StOTagecccccocveveriiieniiieeniieeiee e, nag_dopmtr (f08ggc)

form orthogonal MALrIXccceeeiiiiiiieeiee e e nag_dorgtr (f08ffc)

form orthogonal matrix, packed StOTagecccccveviiiiiriiieiriiieniieeiie e, nag_dopgtr (f08gfc)

reduce to tridiagonal fOrmcccccooiiiiiiiiiiiiiii e nag_dsytrd (f08fec)

reduce to tridiagonal form, packed Storagecccecovveeiriiiieiniiiieeeeiiennn, nag_dsptrd (f08gec)

Reduction of generalized eigenproblems to standard eigenproblems,
complex Hermitian-definite banded generalized eigenproblem Az = ABzx nag zhbgst (f08usc)
complex Hermitian-definite generalized eigenproblem Ax = A\Bx, ABx = Az or BAx = \x
..... nag_zhegst (f08ssc)
complex Hermitian-definite generalized eigenproblem Az = ABx, ABx = Az or BAx = Az, packed
] 1) 7oL PRRT nag_zhpgst (f08tsc)
real symmetric-definite banded generalized eigenproblem Az = ABzx nag_dsbgst (f08uec)
real symmetric-definite generalized eigenproblem Ax = ABxz, ABx = Ax or BAz = Az
..... nag_dsygst (fO08sec)

real symmetric-definite generalized eigenproblem Ax = ABx, ABx = Az or BAx = Az, packed
STOTAZE 1..neviieeeeiiiieee et eeeeeeteeeeeaateeee e eaaeeeaasssaeaesassbeeesansseeaseanseeeeeansseeeeannsseeeeannees nag_dspgst (fO8tec)

RQ factorization and related operations,
complex matrices,
aApPly UNItATY MALTIX ..oviiiiiiiiieeiiie ettt e et et e et eenbee s nag_zunmrq (f08cxc)
FACTOTIZAtIONvviiiieiiiiiee et e ettt e e e te e e e et e e e e ttb e e e e sntbeeeeenssnaeeennesaeens nag_zgerqf (f08cvc)

f08.48 Mark 25

f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

form all or part of UNItary MatriXcccoceviieeiiiiiiieeeiieee e e nag_zungrq (f08cwc)
real matrices,

apply orthogonal MAtriXcccecciieiiiireiiiieeiie e e e e nag_dormrq (fO8ckc)

FACTOTIZATION ..viieiiiieiiieeiee ettt et ettt ettt e ettt e et eeeebeeennaeeenseennees nag_dgerqf (f08chc)

form all or part of orthogonal MatriXccccoecceiiviiiiiiiieriiee e, nag dorgrq (f08cjc)

Singular value decomposition,
complex matrix,
using a divide-and-conquer algorithmcccccoevviiiiiiiiniiienie e, nag_zgesdd (f08krc)
using bidiagonal QR Tterationccceevvieeriiieeniieeiiieeiieesieeeeeeeeseeeeeeaeenes nag zgesvd (fO8kpc)
real matrix,
preconditioned Jacobi SVD using fast scaled rotations and de Rijks pivoting
..... nag_dgejsv (f08khc)

using a divide-and-conquer algorithmc.ccccceiviiiiiiiiiiiiee e nag_dgesdd (f08kdc)
using bidiagonal QR 1terationccccceeveiieeriiiieniiieeiieeesieeeieeeeereesaeeeseeeas nag dgesvd (f08kbc)
using fast scaled rotation and de Rijks pivotingccccoeeeeveviiveniiienieeeninen. nag dgesvj (f08kjc)
Solve generalized Sylvester equation,
COMPIEX MAITICES .vvieeerieeiieeeiieeeiteeeeieeeetteestteeesareessreeesreesnseeeanseeeaseessseesnsseenses nag_ztgsyl (f08yvc)
TEAL MNALIICES .vvieeeiiieeiieeeiieeeieeeettee ettt e et ee et eeeetteeeaeeesabeeesnbeeeanseesnsseesnsseennsseenaseas nag_dtgsyl (f08yhc)
Solve reduced form of Sylvester matrix equation,
COMPLEX MALTICES ...vvviiieiiiiiieeiiiiieeeeriiite e ettt eeeeestbteeeesstaaeeeessssaeeeesssseeesansssneessssees nag_ztrsyl (f08qvc)
TEAL MNALTICES ..vvieiiiiieiiiieeetieeiiee ettt e ettt e eteeesbeeestbeeestbeeeatseesssseesnsseesssaeesssaeensseeessseas nag_dtrsyl (f08qhc)
Split Cholesky factorization,
complex Hermitian positive definite band matrixXccccoeveieeiiieniiieniieeieenee, nag_zpbstf (f08utc)
real symmetric positive definite band matriXcccceoeieiiiiiiiiiniiiieeeeeee e, nag_dpbstf (f08ufc)

6 Auxiliary Functions Associated with Library Function Arguments

None.

7 Functions Withdrawn or Scheduled for Withdrawal

None.

8 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Arioli M, Duff I S and de Rijk P P M (1989) On the augmented system approach to sparse least squares
problems Numer. Math. 55 667—-684

Demmel J] W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873-912

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J. Numer.
Anal. 10 241-256

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia
Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London
Ward R C (1981) Balancing the generalized eigenvalue problem SIAM J. Sci. Stat. Comp. 2 141—-152

Mark 25 f08.49

Introduction — f08 NAG Library Manual

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation Il, Linear Algebra Springer—
Verlag

f08.50 (last) Mark 25

	f08 - Least Squares and Eigenvalue Problems (LAPACK), Chapter Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Linear Least Squares Problems
	2.2 Orthogonal Factorizations and Least Squares Problems
	2.2.1 QR factorization
	2.2.2 LQ factorization
	2.2.3 QR factorization with column pivoting
	2.2.4 Complete orthogonal factorization
	2.2.5 Updating a QR factorization
	2.2.6 Other factorizations

	2.3 The Singular Value Decomposition
	2.4 The Singular Value Decomposition and Least Squares Problems
	2.5 Generalized Linear Least Squares Problems
	2.6 Generalized Orthogonal Factorization and Generalized Linear Least Squares Problems
	2.6.1 Generalized QR Factorization
	2.6.2 Generalized RQ Factorization
	2.6.3 Generalized Singular Value Decomposition (GSVD)
	2.6.4 The Full CS Decomposition of Orthogonal Matrices

	2.7 Symmetric Eigenvalue Problems
	2.8 Generalized Symmetric-definite Eigenvalue Problems
	2.9 Packed Storage for Symmetric Matrices
	2.10 Band Matrices
	2.11 Nonsymmetric Eigenvalue Problems
	2.12 Generalized Nonsymmetric Eigenvalue Problem
	2.13 The Sylvester Equation and the Generalized Sylvester Equation
	2.14 Error and Perturbation Bounds and Condition Numbers
	2.14.1 Least squares problems
	2.14.2 The singular value decomposition
	2.14.3 The symmetric eigenproblem
	2.14.4 The generalized symmetric-definite eigenproblem
	2.14.5 The nonsymmetric eigenproblem
	2.14.6 Balancing and condition for the nonsymmetric eigenproblem
	2.14.7 The generalized nonsymmetric eigenvalue problem
	2.14.8 Balancing the generalized eigenvalue problem
	2.14.9 Other problems

	2.15 Block Partitioned Algorithms

	3 Recommendations on Choice and Use of Available Functions
	3.1 Available Functions
	3.1.1 Driver functions
	3.1.1.1 Linear least squares problems (LLS)
	3.1.1.2 Generalized linear least squares problems (LSE and GLM)
	3.1.1.3 Symmetric eigenvalue problems (SEP)
	3.1.1.4 Nonsymmetric eigenvalue problem (NEP)
	3.1.1.5 Singular value decomposition (SVD)
	3.1.1.6 Generalized symmetric definite eigenvalue problems (GSEP)
	3.1.1.7 Generalized nonsymmetric eigenvalue problem (GNEP)
	3.1.1.8 Generalized singular value decomposition (GSVD)

	3.1.2 Computational functions
	3.1.2.1 Orthogonal factorizations
	3.1.2.2 Generalized orthogonal factorizations
	3.1.2.3 Singular value problems
	3.1.2.4 Generalized singular value decomposition
	3.1.2.5 Symmetric eigenvalue problems
	3.1.2.6 Generalized symmetric-definite eigenvalue problems
	3.1.2.7 Nonsymmetric eigenvalue problems
	3.1.2.8 Generalized nonsymmetric eigenvalue problems
	3.1.2.9 The Sylvester equation and the generalized Sylvester equation

	3.2 NAG Names and LAPACK Names
	3.3 Matrix Storage Schemes
	3.3.1 Conventional storage
	3.3.2 Packed storage
	3.3.3 Band storage
	3.3.4 Tridiagonal and bidiagonal matrices
	3.3.5 Real diagonal elements of complex matrices
	3.3.6 Representation of orthogonal or unitary matrices

	3.4 Argument Conventions
	3.4.1 Option arguments
	3.4.2 Problem dimensions

	4 Decision Trees
	4.1 General Purpose Functions (eigenvalues and eigenvectors)
	Tree 1
	Tree 2
	Tree 3
	Tree 4
	Tree 5
	Tree 6
	Tree 7
	Tree 8
	4.2 General Purpose Functions (singular value decomposition)
	Tree 9

	5 Functionality Index
	6 Auxiliary Functions Associated with Library Function Arguments
	7 Functions Withdrawn or Scheduled for Withdrawal
	8 References
	Anderson et al. (1999)
	Arioli et al. (1989)
	Demmel and Kahan (1990)
	Golub and Van Loan (2012)
	Moler and Stewart (1973)
	Parlett (1998)
	Stewart and Sun (1990)
	Ward (1981)
	Wilkinson (1965)
	Wilkinson and Reinsch (1971)

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

