
NAG Library Function Document

nag_dsptrf (f07pdc)

1 Purpose

nag_dsptrf (f07pdc) computes the Bunch–Kaufman factorization of a real symmetric indefinite matrix,
using packed storage.

2 Specification

#include <nag.h>
#include <nagf07.h>

void nag_dsptrf (Nag_OrderType order, Nag_UploType uplo, Integer n,
double ap[], Integer ipiv[], NagError *fail)

3 Description

nag_dsptrf (f07pdc) factorizes a real symmetric matrix A, using the Bunch–Kaufman diagonal pivoting
method and packed storage. A is factorized as either A ¼ PUDUTPT if uplo ¼ Nag Upper or
A ¼ PLDLTPT if uplo ¼ Nag Lower, where P is a permutation matrix, U (or L) is a unit upper (or
lower) triangular matrix and D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 diagonal
blocks; U (or L) has 2 by 2 unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and
column interchanges are performed to ensure numerical stability while preserving symmetry.

This method is suitable for symmetric matrices which are not known to be positive definite. If A is in
fact positive definite, no interchanges are performed and no 2 by 2 blocks occur in D.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be
factorized.

uplo ¼ Nag Upper
The upper triangular part of A is stored and A is factorized as PUDUTPT, where U is
upper triangular.

uplo ¼ Nag Lower
The lower triangular part of A is stored and A is factorized as PLDLTPT, where L is
lower triangular.

Constraint: uplo ¼ Nag Upper or Nag Lower.

f07 – Linear Equations (LAPACK) f07pdc

Mark 25 f07pdc.1

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

4: ap½dim� – double Input/Output

Note: the dimension, dim, of the array ap must be at least max 1; n� nþ 1ð Þ=2ð Þ.
On entry: the n by n symmetric matrix A, packed by rows or columns.

The storage of elements Aij depends on the order and uplo arguments as follows:

if order ¼ Nag ColMajor and uplo ¼ Nag Upper,
Aij is stored in ap½ j� 1ð Þ � j=2þ i� 1�, for i � j;

if order ¼ Nag ColMajor and uplo ¼ Nag Lower,
Aij is stored in ap½ 2n� jð Þ � j� 1ð Þ=2þ i� 1�, for i � j;

if order ¼ Nag RowMajor and uplo ¼ Nag Upper,
Aij is stored in ap½ 2n� ið Þ � i� 1ð Þ=2þ j� 1�, for i � j;

if order ¼ Nag RowMajor and uplo ¼ Nag Lower,
Aij is stored in ap½ i� 1ð Þ � i=2þ j� 1�, for i � j.

On exit: A is overwritten by details of the block diagonal matrix D and the multipliers used to
obtain the factor U or L as specified by uplo.

5: ipiv½n� – Integer Output

On exit: details of the interchanges and the block structure of D. More precisely,

if ipiv½i� 1� ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A were
interchanged with the kth row and column;

if uplo ¼ Nag Upper and ipiv½i� 2� ¼ ipiv½i� 1� ¼ �l < 0, di�1;i�1
�di;i�1

�di;i�1 dii

� �
is a 2 by 2

pivot block and the i� 1ð Þth row and column of A were interchanged with the lth row and
column;

if uplo ¼ Nag Lower and ipiv½i� 1� ¼ ipiv½i� ¼ �m < 0, dii diþ1;i

diþ1;i diþ1;iþ1

� �
is a 2 by 2

pivot block and the iþ 1ð Þth row and column of A were interchanged with the mth row
and column.

6: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, n ¼ valueh i.
Constraint: n � 0.

f07pdc NAG Library Manual

f07pdc.2 Mark 25

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_SINGULAR

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a
system of equations.

7 Accuracy

If uplo ¼ Nag Upper, the computed factors U and D are the exact factors of a perturbed matrix Aþ E,
where

Ej j � c nð Þ�P Uj j Dj j UT
�� ��PT;

c nð Þ is a modest linear function of n, and � is the machine precision.

If uplo ¼ Nag Lower, a similar statement holds for the computed factors L and D.

8 Parallelism and Performance

nag_dsptrf (f07pdc) is not threaded by NAG in any implementation.

nag_dsptrf (f07pdc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper or
lower triangle is stored, as specified by uplo.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining
elements of U or L overwrite elements in the corresponding columns of A, but additional row
interchanges must be applied to recover U or L explicitly (this is seldom necessary). If ipiv½i � 1� ¼ i,
for i ¼ 1; 2; . . . ; n (as is the case when A is positive definite), then U or L are stored explicitly in packed
form (except for their unit diagonal elements which are equal to 1).

The total number of floating-point operations is approximately 1
3n

3 .

A call to nag_dsptrf (f07pdc) may be followed by calls to the functions:

nag_dsptrs (f07pec) to solve AX ¼ B;

nag_dspcon (f07pgc) to estimate the condition number of A;

nag_dsptri (f07pjc) to compute the inverse of A.

The complex analogues of this function are nag_zhptrf (f07prc) for Hermitian matrices and nag_zsptrf
(f07qrc) for symmetric matrices.

f07 – Linear Equations (LAPACK) f07pdc

Mark 25 f07pdc.3

10 Example

This example computes the Bunch–Kaufman factorization of the matrix A, where

A ¼
2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06
�1:15 0:63 2:06 �1:81

0
B@

1
CA;

using packed storage.

10.1 Program Text

/* nag_dsptrf (f07pdc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer ap_len, i, j, n, nrhs, pdb;
Integer exit_status = 0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
Integer *ipiv = 0;
char nag_enum_arg[40];
double *ap = 0, *b = 0;

#ifdef NAG_LOAD_FP
/* The following line is needed to force the Microsoft linker

to load floating point support */
float force_loading_of_ms_float_support = 0;

#endif /* NAG_LOAD_FP */

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I, J) ap[J*(J-1)/2 + I - 1]
#define A_LOWER(I, J) ap[(2*n-J)*(J-1)/2 + I - 1]
#define B(I, J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I, J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I, J) ap[(2*n-I)*(I-1)/2 + J - 1]
#define B(I, J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_dsptrf (f07pdc) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif
#ifdef _WIN32

scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[^\n] ", &n, &nrhs);

f07pdc NAG Library Manual

f07pdc.4 Mark 25

#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%*[^\n] ", &n, &nrhs);

#endif
ap_len = n*(n+1)/2;

#ifdef NAG_COLUMN_MAJOR
pdb = n;

#else
pdb = nrhs;

#endif

/* Allocate memory */
if (!(ap = NAG_ALLOC(ap_len, double)) ||

!(ipiv = NAG_ALLOC(n, Integer)) ||
!(b = NAG_ALLOC(n * nrhs, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file */
#ifdef _WIN32

scanf_s(" %39s%*[^\n] ", nag_enum_arg, _countof(nag_enum_arg));
#else

scanf(" %39s%*[^\n] ", nag_enum_arg);
#endif

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);

if (uplo == Nag_Upper)
{

for (i = 1; i <= n; ++i)
{

for (j = i; j <= n; ++j)
#ifdef _WIN32

scanf_s("%lf", &A_UPPER(i, j));
#else

scanf("%lf", &A_UPPER(i, j));
#endif

}
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

#ifdef _WIN32
scanf_s("%lf", &A_LOWER(i, j));

#else
scanf("%lf", &A_LOWER(i, j));

#endif
}

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif
}

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= nrhs; ++j)
#ifdef _WIN32

scanf_s("%lf", &B(i, j));
#else

f07 – Linear Equations (LAPACK) f07pdc

Mark 25 f07pdc.5

scanf("%lf", &B(i, j));
#endif

}
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Factorize A */
/* nag_dsptrf (f07pdc).
* Bunch-Kaufman factorization of real symmetric indefinite
* matrix, packed storage
*/

nag_dsptrf(order, uplo, n, ap, ipiv, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_dsptrf (f07pdc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Compute solution */
/* nag_dsptrs (f07pec).
* Solution of real symmetric indefinite system of linear
* equations, multiple right-hand sides, matrix already
* factorized by nag_dsptrf (f07pdc), packed storage
*/

nag_dsptrs(order, uplo, n, nrhs, ap, ipiv, b, pdb, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_dsptrs (f07pec).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print solution */
/* nag_gen_real_mat_print (x04cac).
* Print real general matrix (easy-to-use)
*/

fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b,

pdb, "Solution(s)", 0, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
END:
NAG_FREE(ap);
NAG_FREE(ipiv);
NAG_FREE(b);
return exit_status;

}

10.2 Program Data

nag_dsptrf (f07pdc) Example Program Data
4 2 :Values of n and nrhs
Nag_Lower :Value of uplo
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A
-9.50 27.85
-8.38 9.90
-6.07 19.25
-0.96 3.93 :End of matrix B

f07pdc NAG Library Manual

f07pdc.6 Mark 25

10.3 Program Results

nag_dsptrf (f07pdc) Example Program Results

Solution(s)
1 2

1 -4.0000 1.0000
2 -1.0000 4.0000
3 2.0000 3.0000
4 5.0000 2.0000

f07 – Linear Equations (LAPACK) f07pdc

Mark 25 f07pdc.7 (last)

	f07pdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Golub and Van Loan (1996)

	5 Arguments
	order
	uplo
	n
	ap
	ipiv
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_SINGULAR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

