f07 — Linear Equations (LAPACK) Introduction — f07

NAG Library Chapter Introduction
f07 — Linear Equations (LAPACK)

Contents
1 Scope of the Chapter............. 2
2 Background to the Problems 2
2.1 NOtAtION . . oot 2
2.2 Matrix Factorizations 3
2.3 Solution of Systems of Equations 3
2.4 Sensitivity and Error Analysis 4
2.4.1 Normwise error bounds.ot e 4
2.4.2 Estimating condition NUMbErsttt e 4
2.4.3 Scaling and Equilibration 4
2.4.4 Componentwise error bounds 5
2.4.5 Tterative refinement of the solution 5
2.5 Matrix InVersion. 6
2.6 Packed Storage Formats. 6
2.7 Band and Tridiagonal Matrices.o i, 6
2.8 Block Partitioned Algorithms 6
2.9 Mixed Precision LAPACK Routines 7
3 Recommendations on Choice and Use of Available Functions 7
3.1 Available Functions 7
3.2 NAG Names and LAPACK Names 8
3.3 Matrix Storage Schemes 9
3.3.1 Conventional StOrage.ttt ettt e 9
3.3.2 Packed storage 10
3.3.3 Rectangular Full Packed (RFP) Storage 11
334 Band StOTage v vttt e 13
3.3.5 Unit triangular matriCes.ottt e 14
3.3.6 Real diagonal elements of complex matrices. 15
3.4 Argument Conventions.u.uuinintire 15
3.4.1 Option argUmENtSottt e ettt e e 15
3.4.2 Problem dimensionst e 15
3.5 Tables of Driver and Computational Functions 15
3.5.1 Real matrices. oo v vt 15
3.52 Complex MatriCes o oottt 16
4 Functionality Index. 17
5 Auxiliary Functions Associated with Library Function Arguments...... 21
6 Functions Withdrawn or Scheduled for Withdrawal 21
7 References. 21

Mark 25 f07.1

Introduction — f07 NAG Library Manual

1 Scope of the Chapter

This chapter provides functions for the solution of systems of simultaneous linear equations, and
associated computations. It provides functions for

matrix factorizations;

solution of linear equations;

estimating matrix condition numbers;

computing error bounds for the solution of linear equations;

matrix inversion.

Functions are provided for both rea/ and complex data.

For a general introduction to the solution of systems of linear equations, you should turn first to the f04
Chapter Introduction. The decision trees, in Section 4 in the f04 Chapter Introduction, direct you to the
most appropriate functions in Chapters f04 or f07 for solving your particular problem. In particular,
Chapters f04 and f07 contain Black Box (or driver) functions which enable some standard types of
problem to be solved by a call to a single function. Where possible, functions in Chapter f04 call
Chapter f07 functions to perform the necessary computational tasks.

There are two types of driver functions in this chapter: simple drivers which just return the solution to
the linear equations; and expert drivers which also return condition and error estimates and, in many
cases, also allow equilibration. The simple drivers for real matrices have names of the form nag d..sv
(f07.ac) and for complex matrices have names of the form nag_z..sv (f07.nc). The expert drivers for real
matrices have names of the form nag_d..svx (f07.bc) and for complex matrices have names of the form
nag_z..svx (f07.pc).

The functions in this chapter (Chapter f07) handle only dense and band matrices (not matrices with more
specialised structures, or general sparse matrices).

The functions in this chapter have all been derived from the LAPACK project (see Anderson et al.
(1999)). They have been designed to be efficient on a wide range of high-performance computers,
without compromising efficiency on conventional serial machines.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of systems of linear equations. Consult
a standard textbook, for example Golub and Van Loan (1996) for a more thorough discussion.

2.1 Notation
We use the standard notation for a system of simultaneous linear equations:
Az =0 (1)

where A is the coefficient matrix, b is the right-hand side, and x is the solution. A is assumed to be a
square matrix of order n.

If there are several right-hand sides, we write
AX =B (2)

where the columns of B are the individual right-hand sides, and the columns of X are the corresponding
solutions.

We also use the following notation, both here and in the function documents:

z a computed solution to Ax = b, (which usually differs from the exact
solution x because of round-off error)
r=b— Az the residual corresponding to the computed solution &
||z]|, = max]|z;| the oo-norm of the vector x
13

f07.2 Mark 25

f07 — Linear Equations (LAPACK) Introduction — f07

the 1-norm of the vector =

n
Izl =l
=1

A _ max_|a;;| the co-norm of the matrix A
v
" the 1-norm of the matrix A
Al = max) _Ja|
=1
|| the vector with elements |z;|
|A| the matrix with elements |a;;|

Inequalities of the form |A| < |B| are interpreted component-wise, that is ‘aij’ < ’bij‘ for all 4, j.

2.2 Matrix Factorizations

If A is upper or lower triangular, Az = b can be solved by a straightforward process of backward or
forward substitution.

Otherwise, the solution is obtained after first factorizing A, as follows.
General matrices (LU factorization with partial pivoting)
A=PLU

where P is a permutation matrix, L is lower-triangular with diagonal elements equal to 1, and U is
upper-triangular; the permutation matrix P (which represents row interchanges) is needed to ensure
numerical stability.

Symmetric positive definite matrices (Cholesky factorization)
A=U"U or A=LL"
where U is upper triangular and L is lower triangular.

Symmetric positive semidefinite matrices (pivoted Cholesky factorization)
A=PU'UP" or A=PLL'P"

where P is a permutation matrix, U is upper triangular and L is lower triangular. The permutation matrix
P (which represents row-and-column interchanges) is needed to ensure numerical stability and to reveal
the numerical rank of A.

Symmetric indefinite matrices (Bunch—Kaufman factorization)
A=PUDU'P" or A=PLDL'P"

where P is a permutation matrix, U is upper triangular, L is lower triangular, and D is a block diagonal
matrix with diagonal blocks of order 1 or 2; U and L have diagonal elements equal to 1, and have 2 by 2
unit matrices on the diagonal corresponding to the 2 by 2 blocks of D. The permutation matrix P (which
represents symmetric row-and-column interchanges) and the 2 by 2 blocks in D are needed to ensure
numerical stability. If A is in fact positive definite, no interchanges are needed and the factorization
reduces to A = UDUT or A= LDL" with diagonal D, which is simply a variant form of the Cholesky
factorization.

2.3 Solution of Systems of Equations

Given one of the above matrix factorizations, it is straightforward to compute a solution to Ax = b by
solving two subproblems, as shown below, first for y and then for x. Each subproblem consists
essentially of solving a triangular system of equations by forward or backward substitution; the
permutation matrix P and the block diagonal matrix D introduce only a little extra complication:

General matrices (LU factorization)

Ly= P
Ur=y

Mark 25 f07.3

Introduction — 07 NAG Library Manual

Symmetric positive definite matrices (Cholesky factorization)

Uy =5 or Ly=1b

Uxr =y LTz =y
Symmetric indefinite matrices (Bunch—Kaufman factorization)
PUDy=1b PLDy=1b

UPle=y % LTPTz=y

2.4 Sensitivity and Error Analysis
2.4.1 Normwise error bounds

Frequently, in practical problems the data A and b are not known exactly, and it is then important to
understand how uncertainties or perturbations in the data can affect the solution.

If = is the exact solution to Az =b, and x + dx is the exact solution to a perturbed problem
(A+ 6A)(z + éx) = (b+ 6b), then
Izl A)<||6A|| ot

< —— + == | + - - - (second-order terms)
] 1Al ||b||)

where r(A) is the condition number of A defined by
k(A) = | Al[|A7]. (3)

In other words, relative errors in A or b may be amplified in z by a factor x(A). Section 2.4.2 discusses
how to compute or estimate x(A).

Similar considerations apply when we study the effects of rounding errors introduced by computation in
finite precision. The effects of rounding errors can be shown to be equivalent to perturbations in the

0A ob
[oA] and L] are usually at most p(n)e, where € is the machine precision and

1Al el
p(n) is an increasing function of n which is seldom larger than 10n (although in theory it can be as large
as 2" 1).

original data, such that

In other words, the computed solution Z is the exact solution of a linear system (A + 6A)% = b+ b
which is close to the original system in a normwise sense.

2.4.2 Estimating condition numbers

The previous section has emphasized the usefulness of the quantity x(A) in understanding the sensitivity
of the solution of Ax =b. To compute the value of xk(A) from equation (3) is more expensive than
solving Az = b in the first place. Hence it is standard practice to estimate r(A), in either the 1-norm or
the oco-norm, by a method which only requires O(n?) additional operations, assuming that a suitable
factorization of A is available.

The method used in this chapter is Higham’s modification of Hager’s method (see Higham (1988)). It
yields an estimate which is never larger than the true value, but which seldom falls short by more than a
factor of 3 (although artificial examples can be constructed where it is much smaller). This is acceptable
since it is the order of magnitude of x(A) which is important rather than its precise value.

Because x(A) is infinite if A is singular, the functions in this chapter actually return the reciprocal of
k(A).
2.4.3 Scaling and Equilibration

The condition of a matrix and hence the accuracy of the computed solution, may be improved by
scaling; thus if D; and D, are diagonal matrices with positive diagonal elements, then

B=DAD,

is the scaled matrix. A general matrix is said to be equilibrated if it is scaled so that the lengths of its
rows and columns have approximately equal magnitude. Similarly a general matrix is said to be row-

f07.4 Mark 25

f07 — Linear Equations (LAPACK) Introduction — f07

equilibrated (column-equilibrated) if it is scaled so that the lengths of its rows (columns) have
approximately equal magnitude. Note that row scaling can affect the choice of pivot when partial
pivoting is used in the factorization of A.

A symmetric or Hermitian positive definite matrix is said to be equilibrated if the diagonal elements are
all approximately equal to unity.

For further information on scaling and equilibration see Section 3.5.2 of Golub and Van Loan (1996),
Section 7.2, 7.3 and 9.8 of Higham (1988) and Section 5 of Chapter 4 of Wilkinson (1965).

Functions are provided to return the scaling factors that equilibrate a matrix for general, general band,
symmetric and Hermitian positive definite and symmetric and Hermitian positive definite band matrices.

2.4.4 Componentwise error bounds

A disadvantage of normwise error bounds is that they do not reflect any special structure in the data A
and b — that is, a pattern of elements which are known to be zero — and the bounds are dominated by the
largest elements in the data.

Componentwise error bounds overcome these limitations. Instead of the normwise relative error, we can
bound the relative error in each component of A and b:

max ‘6aij‘,M fw
ijk {aij| |br|

where the component-wise backward error bound w is given by

|7
w=max———
i (JAL|2] 4 [b]),

Functions are provided in this chapter which compute w, and also compute a forward error bound which
is sometimes much sharper than the normwise bound given earlier:

Izl =zl
Care is taken when computing this bound to allow for rounding errors in computing r. The norm
||A=|.Ir|||, is estimated cheaply (without computing A~!) by a modification of the method used to
estimate k(A).

2.4.5 Iterative refinement of the solution

If £ is an approximate computed solution to Ax =b, and r is the corresponding residual, then a
procedure for iterative refinement of & can be defined as follows, starting with z¢ = Z:

for i =0,1,..., until convergence

compute r; =b— Ax;
solve Ad; = r;
compute x;4 =x; +d;

In Chapter f04, functions are provided which perform this procedure using additional precision to
compute r, and are thus able to reduce the forward error to the level of machine precision.

The functions in this chapter do not use additional precision to compute r, and cannot guarantee a small
forward error, but can guarantee a small backward error (except in rare cases when A is very ill-
conditioned, or when A and z are sparse in such a way that | A|.|x| has a zero or very small component).
The iterations continue until the backward error has been reduced as much as possible; usually only one
iteration is needed.

Mark 25 f07.5

Introduction — f07 NAG Library Manual

2.5 Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix. In particular, do not attempt to solve
Ax = b by first computing A~' and then forming the matrix-vector product z = A~'b; the procedure
described in Section 2.3 is more efficient and more accurate.

However, functions are provided for the rare occasions when an inverse is needed, using one of the
factorizations described in Section 2.2.

2.6 Packed Storage Formats

Functions which handle symmetric matrices are usually designed so that they use either the upper or
lower triangle of the matrix; it is not necessary to store the whole matrix. If the upper or lower triangle is
stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements
of the array can be used to store other useful data.

However, that is not always convenient, and if it is important to economize on storage, the upper or
lower triangle can be stored in a one-dimensional array of length n(n + 1)/2 or a two-dimensional array
with n(n 4 1)/2 elements; in other words, the storage is almost halved.

The one-dimensional array storage format is referred to as packed storage; it is described in
Section 3.3.2. The two-dimensional array storage format is referred to as Rectangular Full Packed (RFP)
format; it is described in Section 3.3.3. They may also be used for triangular matrices.

Functions designed for these packed storage formats perform the same number of arithmetic operations
as functions which use conventional storage. Those using a packed one-dimensional array are usually
less efficient, especially on high-performance computers, so there is then a trade-off between storage and
efficiency. The RFP functions are as efficient as for conventional storage, although only a small subset of
functions use this format.

2.7 Band and Tridiagonal Matrices

A band matrix is one whose nonzero elements are confined to a relatively small number of subdiagonals
or superdiagonals on either side of the main diagonal. A tridiagonal matrix is a special case of a band
matrix with just one subdiagonal and one superdiagonal. Algorithms can take advantage of bandedness
to reduce the amount of work and storage required. The storage scheme used for band matrices is
described in Section 3.3.4.

The LU factorization for general matrices, and the Cholesky factorization for symmetric and Hermitian
positive definite matrices both preserve bandedness. Hence functions are provided which take advantage
of the band structure when solving systems of linear equations.

The Cholesky factorization preserves bandedness in a very precise sense: the factor U or L has the same
number of superdiagonals or subdiagonals as the original matrix. In the LU factorization, the row-
interchanges modify the band structure: if A has k; subdiagonals and k, superdiagonals, then L is not a
band matrix but still has at most k; nonzero elements below the diagonal in each column; and U has at
most k; + k, superdiagonals.

The Bunch—Kaufman factorization does not preserve bandedness, because of the need for symmetric
row-and-column permutations; hence no functions are provided for symmetric indefinite band matrices.

The inverse of a band matrix does not in general have a band structure, so no functions are provided for
computing inverses of band matrices.

2.8 Block Partitioned Algorithms

Many of the functions in this chapter use what is termed a block partitioned algorithm. This means that
at each major step of the algorithm a block of rows or columns is updated, and most of the computation
is performed by matrix-matrix operations on these blocks. The matrix-matrix operations are performed
by calls to the Level 3 BLAS (see Chapter f16), which are the key to achieving high performance on
many modern computers. See Golub and Van Loan (1996) or Anderson et al. (1999) for more about
block partitioned algorithms.

f07.6 Mark 25

f07 — Linear Equations (LAPACK) Introduction — f07

The performance of a block partitioned algorithm varies to some extent with the block size — that is, the
number of rows or columns per block. This is a machine-dependent argument, which is set to a suitable
value when the library is implemented on each range of machines. You do not normally need to be
aware of what value is being used. Different block sizes may be used for different functions. Values in
the range 16 to 64 are typical.

On some machines there may be no advantage from using a block partitioned algorithm, and then the
functions use an unblocked algorithm (effectively a block size of 1), relying solely on calls to the Level 2
BLAS (see Chapter f16 again).

2.9 Mixed Precision LAPACK Routines

Some LAPACK routines use mixed precision arithmetic in an effort to solve problems more efficiently
on modern hardware. They work by converting a double precision problem into an equivalent single
precision problem, solving it and then using iterative refinement in double precision to find a full
precision solution to the original problem. The method may fail if the problem is too ill-conditioned to
allow the initial single precision solution, in which case the functions fall back to solve the original
problem entirely in double precision. The vast majority of problems are not so ill-conditioned, and in
those cases the technique can lead to significant gains in speed without loss of accuracy. This is
particularly true on machines where double precision arithmetic is significantly slower than single
precision.

3 Recommendations on Choice and Use of Available Functions

3.1 Available Functions

Tables 1 and 8 in Section 3.5 show the functions which are provided for performing different
computations on different types of matrices. Table 1 shows functions for real matrices; Table 8 shows
functions for complex matrices. Each entry in the table gives the NAG function name and the LAPACK
double precision name (see Section 3.2).

Functions are provided for the following types of matrix:
general
general band
symmetric or Hermitian positive definite
symmetric or Hermitian positive definite (packed storage)
symmetric or Hermitian positive definite (RFP storage)
symmetric or Hermitian positive definite band
symmetric or Hermitian positive definite tridiagonal
symmetric or Hermitian indefinite
symmetric or Hermitian indefinite (packed storage)
triangular
triangular (packed storage)
triangular (RFP storage)
triangular band

For each of the above types of matrix (except where indicated), functions are provided to perform the
following computations:

(a) (except for RFP matrices) solve a system of linear equations (driver functions);

(b) (except for RFP matrices) solve a system of linear equations with condition and error estimation
(expert drivers);

(c) (except for triangular matrices) factorize the matrix (see Section 2.2);

Mark 25 f07.7

Introduction — f07 NAG Library Manual

(d) solve a system of linear equations, using the factorization (see Section 2.3);

(e) (except for RFP matrices) estimate the condition number of the matrix, using the factorization (see
Section 2.4.2); these functions also require the norm of the original matrix (except when the matrix
is triangular) which may be computed by a function in Chapter f16;

(f) (except for RFP matrices) refine the solution and compute forward and backward error bounds (see
Sections 2.4.4 and 2.4.5); these functions require the original matrix and right-hand side, as well as
the factorization returned from (a) and the solution returned from (b);

(g) (except for band and tridiagonal matrices) invert the matrix, using the factorization (see
Section 2.5).

Thus, to solve a particular problem, it is usually only necessary to call a single driver function, but
alternatively two or more functions may be called in succession. This is illustrated in the example
programs in the function documents.

3.2 NAG Names and LAPACK Names

As well as the NAG function name (beginning f07), Tables 1 and 8 show the LAPACK routine names in
double precision.

The functions may be called either by their NAG short names or by their NAG long names. The NAG
long names for a function is simply the LAPACK name (in lower case) prepended by nag_, for example,
nag_dpotrf is the long name for f07fdc.

References to Chapter f07 functions in the manual normally include the LAPACK double precision
names, for example, nag_dgetrf (f07adc).

The LAPACK routine names follow a simple scheme. Most names have the structure xyyzzz, where the
components have the following meanings:

— the initial letter x indicates the data type (real or complex) and precision:

s — real, single precision
d - real, double precision
¢ — complex, single precision
z — complex, double precision

— exceptionally, the mixed precision LAPACK routines described in Section 2.9 replace the initial first
letter by a pair of letters, as:

ds — double precision function using single precision internally
zc — double complex function using single precision complex internally
— the letters yy indicate the type of the matrix A (and in some cases its storage scheme):
ge — general
gb

po — symmetric or Hermitian positive definite

general band

pf — symmetric or Hermitian positive definite (rectangular full packed (RFP) storage)
pp - symmetric or Hermitian positive definite (packed storage)

pb — symmetric or Hermitian positive definite band

sy — symmetric indefinite

sf — symmetric indefinite (rectangular full packed (RFP) storage)

sp — symmetric indefinite (packed storage)

he

(complex) Hermitian indefinite

hf - (complex) Hermitian indefinite (rectangular full packed (RFP) storage)

f07.8 Mark 25

f07 — Linear Equations (LAPACK) Introduction — f07

hp - (complex) Hermitian indefinite (packed storage)

gt — general tridiagonal

pt — symmetric or Hermitian positive definite tridiagonal
tr — triangular

tf - triangular (rectangular full packed (RFP) storage)

tp — triangular (packed storage)
tb — triangular band
— the last two or three letters zz or zzz indicate the computation performed. Examples are:
trf — triangular factorization
trs — solution of linear equations, using the factorization
con — estimate condition number
rfs — refine solution and compute error bounds
tri — compute inverse, using the factorization

Thus the function nag_dgetrf performs a triangular factorization of a real general matrix in double
precision; the corresponding function for a complex general matrix is nag zgetrf.

3.3 Matrix Storage Schemes
In this chapter the following different storage schemes are used for matrices:
— conventional storage;
— packed storage for symmetric, Hermitian or triangular matrices;
— rectangular full packed (RFP) storage for symmetric, Hermitian or triangular matrices;
— band storage for band matrices.

These storage schemes are compatible with those used in Chapter f16 (especially in the BLAS) and
Chapter 08, but different schemes for packed or band storage are used in a few older functions in
Chapters 101, 02, f03 and f04.

In the examples below, * indicates an array element which need not be set and is not referenced by the
functions. The examples illustrate only the relevant part of the arrays; array arguments may of course
have additional rows or columns, according to the usual rules for passing array arguments.

3.3.1 Conventional storage

Matrices may be stored column-wise or row-wise as described in Section 3.2.1.4 in the Essential
Introduction: a matrix A is stored in a one-dimensional array a, with matrix element a; ; stored column-
wise in array element a[(j — 1) x pda+ i — 1] or row-wise in array element a[(i — 1) x pda+ j — 1]
where pda is the principle dimension of the array (i.e., the stride separating row or column elements of
the matrix respectively). Most functions in this chapter contain the order argument which can be set to
Nag ColMajor for column-wise storage or Nag RowMajor for row-wise storage of matrices. Where
groups of functions are intended to be used together, the value of the order argument passed must be
consistent throughout.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by * or , in the examples below.

For example, when n = 3:

Mark 25 f07.9

Introduction — f07 NAG Library Manual

order uplo Triangular matrix A Storage in array a
Nag_ColMajor | Nag Upper ann G aps a11uLa1202211013023033
a2 a3
ass3
Nag RowMajor | Nag_Upper a; ap ans a11a120131022023 111033
a2 a3
ass
Nag_ColMaj or Nag_Lower aln a11021a31102203201033
az1 Q2
a1 a3 as3
Nag RowMajor | Nag Lower an G11uLa21 220,031 032033
az1 Q2
a1 Qs as3

Functions which handle symmetric or Hermitian matrices allow for either the upper or lower triangle of
the matrix (as specified by uple) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set.

For example, when n = 3:

order uplo Hermitian matrix A Storage in array a

Nag ColMajor | Nag_ Upper ay ap as a110Uu0120220,013023033

a2 G a3
a13 az3 ass

Nag_ RowMajor | Nag Upper a;; ap ans Q1112013022023 111433

Q12 G2 Qp3
a3 az3 G33

Nag_ColMajor Nag_Lower ajy @y as a11021a31402203201033

az1 G G32
a1 asy asj

Nag_RowMajor | Nag_Lower ajy dy as a11uLa210220031032033

a1 ayp a3
a3y azy ass

3.3.2 Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle
(again as specified by uplo) is packed by columns in a one-dimensional array. In this chapter, as in
Chapters fO8 and f16, arrays which hold matrices in packed storage, have names ending in P. For a
matrix of order n, the array must have at least n(n + 1)/2 elements. So:

if uplo = Nag_Upper, a;; is stored in ap[i — 1+ j(j —1)/2] for i < j;
if uplo = Nag_Lower, a;; is stored in ap[i — 1+ (2n — j)(j7 —1)/2] for j <.

For example:

f07.10 Mark 25

f07 — Linear Equations (LAPACK) Introduction — f07

Triangle of matrix A Packed storage in array ap
uplo = Nag_Upper ajy aip a3 Ga a1 12022 13023033 114024034044
—— N -
Qpy Q3 QA4
az3 Q34
Q44
uplo = Nag_Lower al 11021031041 022032042 A33043 A44
—_———e e
a1 G2
aszl asz as3
41 Q42 Q43 Q44

Note that for real symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle
by rows. (For complex Hermitian matrices, the only difference is that the off-diagonal elements are
conjugated.)

3.3.3 Rectangular Full Packed (RFP) Storage

The rectangular full packed (RFP) storage format offers the same savings in storage as the packed
storage format (described in Section 3.3.2), but is likely to be much more efficient in general since the
block structure of the matrix is maintained. This structure can be exploited using block partition
algorithms (see Section 2.8) in a similar way to matrices that use conventional storage.

AF

Figure 1 gives a graphical representation of the key idea of RFP for the particular case of a lower
triangular matrix of even dimensions. In all cases the original triangular matrix of stored elements is
separated into a trapezoidal part and a triangular part. The number of columns in these two parts is equal
when the dimension of the matrix is even, n = 2k, while the trapezoidal part has k£ + 1 columns when
n = 2k + 1. The smaller part is then transposed and fitted onto the trapezoidal part forming a rectangle.
The rectangle has dimensions 2k + 1 and ¢, where ¢ = kK when n is even and ¢ = k + 1 when n is odd.

For functions using RFP there is the option of storing the rectangle as described above
(transr = Nag_RFP_Normal) or its transpose (transr = Nag RFP_Trans, for real a) or its conjugate
transpose (transr = Nag RFP_ConjTrans, for complex a). It is useful to note that the storage ordering
for Nag RowMajor is the same as that for Nag_ColMajor with the value of transr = Nag RFP_Normal
switched to transr = Nag RFP_Trans or vice versa.

As an example, we first consider RFP for the case n = 2k with k = 3.
If transr = Nag_ RFP_Normal, then ar holds a as follows:

For uplo = Nag_Upper the upper trapezoid AR(1 : 6,1 : 3) consists of the last three columns of a
upper. The lower triangle AR(5: 7,1 : 3) consists of the transpose of the first three columns of a

upper.

For uplo = Nag_Lower the lower trapezoid AR(2 : 7,1 : 3) consists of the first three columns of a
lower. The upper triangle AR(1 : 3,1 : 3) consists of the transpose of the last three columns of a
lower.

Mark 25 f07.11

Introduction — f07 NAG Library Manual

If transr = Nag_RFP_Trans, then ar in both uplo cases is just the transpose of ar as defined when
transr = Nag_RFP_Normal.

uplo Triangle of matrix A Rectangular Full Packed matrix AR
transr = Nag_RFP_Normal transr = Nag_RFP_Trans
Nag_Upper[/00 01 02 03 04 05 03 04 05 03 13 23 33 00 01 02
11 12 13 14 15 13 14 15 04 14 24 34 44 11 12
22 23 24 25 23 24 25 05 15 25 35 45 55 22
33 34 35 33 34 35
44 45 00 44 45
55 01 11 55
02 12 22
Nag Lower| /00 33 43 53 33 00 10 20 30 40 50
10 11 00 44 54 43 44 11 21 31 41 51
20 21 22 10 11 55 53 54 55 22 32 42 52
30 31 32 33 20 21 22
40 41 42 43 44 30 31 32
50 51 52 53 54 55 40 41 42
50 51 52

Now we consider RFP for the case n =2k + 1 and k = 2.

If transr = Nag_RFP_Normal. ar holds a as follows:
if uplo = Nag Upper the upper trapezoid AR(1 : 5,1 : 3) consists of the last three columns of a
upper. The lower triangle AR(4 : 5,1 : 2) consists of the transpose of the first two columns of a
upper;
if uplo = Nag_Lower the lower trapezoid AR(1 : 5,1 : 3) consists of the first three columns of a

lower. The upper triangle AR(1 : 2,2 : 3) consists of the transpose of the last two columns of a
lower.

If transr = Nag RFP_Trans. ar in both uplo cases is just the transpose of ar as defined when
transr = Nag_RFP_Normal.

uplo Triangle of matrix A Rectangular Full Packed matrix AR
transr = Nag RFP Normal| transr = Nag RFP_Trans
Nag Upper| /00 01 02 03 04 02 03 04 02 12 22 00 01
11 12 13 14 12 13 14 03 13 23 33 11
22 23 24 22 23 24 04 14 24 34 44
33 34 00 33 34
44 01 11 44
Nag_Lower| /00 00 33 43 00 10 20 30 40 50
10 11 10 11 44 33 11 21 31 41 51
20 21 22 20 21 22 43 44 22 32 42 52
30 31 32 33 30 31 32
40 41 42 43 44 40 41 42

Explicitly, in the real matrix case, ar is a one-dimensional array of length n(n + 1)/2 and, when
Nag_ColMajor, contains the elements of a as follows:

for uplo = Nag_Upper and transr = Nag RFP_Normal,
a;; is stored in ar[(2k+1)(i—1)+j+ k|, for] <j<kand 1 <i <y, and
a;; is stored in ar[2k+1)(j—k—1)4+i—1], for k<j<mnand 1 <i<y;

for uplo = Nag Upper and transr = Nag RFP_Trans,
a;; is stored in ar[g(j+ k) +i—1], for 1 <j<kand 1 <i <y, and
a;; is stored in arfg(i — 1) +j—k—1], fork<j<nand 1 <i <y

for uplo = Nag_Lower and transr = Nag_RFP_Normal,
a;; is stored in ar[2k+1)(j—1)+i+k—gq], for 1 <j<gand j<i<n, and
a;; is stored in ar[(2k+1)(i—k—1)+j—q—1], forg<j<mnand j<i<n;

for uplo = Nag_Lower and transr = Nag_RFP_Trans,
a;; is stored in arfg(i+k—¢q)+j—1], for 1 <j<gand 1 <i<n, and
a;; is stored in ar[g(j—1—¢q)+i—k—1], forg<j<mand 1 <i<n.

f07.12 Mark 25

f07 — Linear Equations (LAPACK) Introduction — f07

When Nag RowMajor the above storage formulae can be used by looking up the opposite case for
transr, ie., when transr = Nag RFP_Trans look up the storage order above for the cases when
transr = Nag_RFP_Normal and vice versa.

In the case of complex matrices, the assumption is that the full matrix, if it existed, would be Hermitian.
Thus, when transr = Nag_ RFP _Normal, the triangular portion of a that is, in the real case, transposed
into the notional (2k + 1) by ¢ RFP matrix is also conjugated. When transr = Nag_RFP_ConjTrans the
notional ¢ by (2k+1) RFP matrix is the conjugate transpose of the corresponding
transr = Nag_ RFP_Normal RFP matrix. Explicitly, for complex a, the array ar contains the elements
(or conjugated elements) of a as follows:

for uplo = Nag_Upper and transr = Nag_RFP_Normal,
a;; is stored in ar[(2k+1)(i—1)+j+ k|, for] <j<kand 1 <i <}, and
a;j is stored in ar[2k+1)(j—k—1)+i—1], for k< j<mand 1 <i<j

for uplo = Nag_Upper and transr = Nag_RFP_ConjTrans,
a;; is stored in arfg(j+ k) +i—1], for 1 <j<kand 1 <7<y, and
a;; is stored in arfg(i — 1) +j—k—1], for k<j<nand 1 <i<y

for uplo = Nag_Lower and transr = Nag RFP_Normal,
a;; is stored in ar[(2k+1)(j —1)+i+k—¢q], for 1 <j<gand j <i<n, and
a;; is stored in ar[2k+1)(i —k—1)+j—qg—1], forg<j<mand j<i<n;

for uplo = Nag_Lower and transr = Nag_RFP_ConjTrans,
a;; is stored in arfg(i+k—¢q)+j—1], for 1 <j<gand 1 <i<n, and
a;; is stored in ar[g(j —1—¢q)+i—k—1], forg<j<mnand 1 <i<n.

When Nag RowMajor the above storage formulae can be used by looking up the opposite case for
transr, i.e., when transr = Nag_RFP_ConjTrans look up the storage order above for the cases when
transr = Nag_RFP_Normal and vice versa.

3.3.4 Band storage

A band matrix with k; subdiagonals and k, superdiagonals may be stored compactly in a notional two-
dimensional array with k; 4+ k, + 1 rows and n columns if stored column-wise or n rows and k; + k, + 1
columns if stored row-wise. In column-major order, elements of a column of the matrix are stored
contiguously in the array, and elements of the diagonals of the matrix are stored with constant stride (i.e.,
in a row of the two-dimensional array). In row-major order, elements of a row of the matrix are stored
contiguously in the array, and elements of a diagonal of the matrix are stored with constant stride (i.e., in
a column of the two-dimensional array). These storage schemes should only be used in practice if &,
k, < n, although the functions in Chapters f07 and f08 work correctly for all values of k; and k,. In
Chapters f07 and fO8 arrays which hold matrices in band storage have names ending in B.

To be precise, elements of matrix elements a;; are stored as follows:
if order = Nag_ColMajor, a;; is stored in ab[(j — 1) x pdab + k, + i — j|;
if order = Nag_RowMajor, q;; is stored in ab[(i — 1) x pdab + k; + j — i],

where pdab >k +k,+1 is the stride between diagonal elements and where
max(l,i — k) < j < min(n,i+ k).

For example, when n =35, k; =2 and k, = 1:

Band matrix A Band storage in array ab

order = Nag_ColMajor | order = Nag_RowMajor

app ap * a2 a3 A34 445 * * app ap
az; Gz Qa3 ajl a2 a3z Q44 A55 * az; Gz Q23
azy asx aszz a34 az1 Az Q43 Q54 X azy az a3z a34
Q42 Q43 Q44 Q45 as; Q@42 QAs3 X * Q42 Q43 Q44 Q45

@53 As4 As5 @53 QAs4 QAs5 X

Mark 25 f07.13

Introduction — 07 NAG Library Manual

The elements marked * in the upper left and lower right corners of the array ab need not be set, and are
not referenced by the functions. In this example, if order = Nag_ColMajor and ldab takes the minimum
value of 4, then ab[0] need not be set, ab[l] = a;;,ab[2] = ayy,...,ab[17] = ass. On the other hand, if
order = Nag RowMajor (ldab=4), then ab[0] and ab[l] need not be set,
ab[2] = an,ab[?a] = 12y .., ab[18] = ass.

Note: when a general band matrix is supplied for LU factorization, space must be allowed to store an
additional k; superdiagonals, generated by fill-in as a result of row interchanges. This means that the
matrix is stored according to the above scheme, but with k; 4+ k, superdiagonals; it also means that the
principal dimension has the constraint ldab > 2k; + &, + 1.

Triangular band matrices are stored in the same format, with either k; = 0 if upper triangular, or k, = 0
if lower triangular.

For symmetric or Hermitian band matrices with & subdiagonals or superdiagonals, only the upper or
lower triangle (as specified by uplo) need be stored:

if uplo = Nag_Upper then
if order = Nag_ColMajor, a;; is stored in ab[(j — 1) x pdab + k + i — j];
if order = Nag_RowMajor, a;; is stored in ab[(i — 1) x pdab + j — i].
for max(1,j — k) <i <y
if uplo = Nag_Lower then
if order = Nag_ColMajor, a;; is stored in ab[(j — 1) x pdab + i — j|;
if order = Nag_RowMajor, a;; is stored in ab[(i — 1) x pdab + k + j — i].
for j <1i < min(n,j+ k),
where pdab > k£ 4 1 is the stride separating diagonal matrix elements in the array ab.

For example, when n =5 and k = 2:

uplo Hermitian band matrix A Band storage in array ab
order = Nag_ColMajor |order = Nag_RowMajor

Nag_Upper| /a;; a1n ans * * a3 G4 435 air a2 a3
Qiy G (3 Qx4 * @2 Q23 A34 Q45 a2y A23 A4
a3 (3 azz a3 435 ajl G a3 Q44 G55 a3 (34 ass

Az4 Q34 Q44 Q45 Qa4 Q45 %

azs Q45 As5 ass ok *
Nag_Lower| /ay; @ as ail Qp (33 Q44 Ass * * ap
a1 Gxp a3 G4 Q21 A3 (43 Qs4 k ka1 a2
a3 a3 (33 Q43 Qs3 3] Q4 as3 * * a3 a3y a3
G4 (43 Q44 Q54 G4 Q43 Qa4
asy as4 ass as3 as4 ass

Note that different storage schemes for band matrices are used by some functions in Chapters f01, 02,
f03 and f04. In the above example, if order = Nag ColMajor and pdab =3, then for
uplo = Nag Upper, ab[2] = a;j,ab[4] = aja,...,ab[14] =ass; while for uplo=Nag Lower,
ab[0] = ajj,ab[l] = ayy,...,ab[12] = ass. If order = Nag_RowMajor (pdab=3), then for
uplo = Nag_Upper, ab[0] = a;j,ab[l] = ajp,...,ab[12] = ass; while for uplo=NagLower,
ab[2] = a”,ab[4] = A2y, ab[14] = ass.

3.3.5 Unit triangular matrices

Some functions in this chapter have an option to handle unit triangular matrices (that is, triangular
matrices with diagonal elements = 1). This option is specified by an argument diag. If
diag = Nag_UnitDiag (Unit triangular), the diagonal elements of the matrix need not be stored, and
the corresponding array elements are not referenced by the functions. The storage scheme for the rest of
the matrix (whether conventional, packed or band) remains unchanged.

f07.14 Mark 25

f07 — Linear Equations (LAPACK) Introduction — f07

3.3.6 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal elements that are by definition purely real. In addition,
complex triangular matrices which arise in Cholesky factorization are defined by the algorithm to have
real diagonal elements.

If such matrices are supplied as input to functions in Chapters f07 and f08, the imaginary parts of the
diagonal elements are not referenced, but are assumed to be zero. If such matrices are returned as output
by the functions, the computed imaginary parts are explicitly set to zero.

3.4 Argument Conventions
3.4.1 Option arguments

In addition to the order argument of type Nag OrderType, most functions in this Chapter have one or
more option arguments of various types; only options of the correct type may be supplied.

For example,

nag_dpotrf (Nag_RowMajor,Nag_Upper,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, m in nag dgetrf (f07adc), n or nrhs in
nag_dgetrs (f07aec)) to be passed as zero, in which case the computation (or part of it) is skipped.
Negative dimensions are regarded as an error.

3.5 Tables of Driver and Computational Functions
3.5.1 Real matrices
Each entry gives:

the NAG function short name

the LAPACK routine name from which the NAG function long name is derived by prepending

nag .
Type of matrix and storage scheme
Operation general general band general tridiagonal
driver nag_dgesv (f07aac) nag_dgbsv (f07bac) nag_dgtsv (f07cac)
expert driver nag_dgesvx (f07abc) nag_dgbsvx (f07bbc) nag_dgtsvx (f07cbc)
mixed precision driver |nag_dsgesv (f07acc)
factorize nag_dgetrf (f07adc) nag_dgbtrf (f07bdc) nag_dgttrf (f07cdc)
solve nag_dgetrs (f07aec) nag_dgbtrs (f07bec) nag_dgttrs (f07cec)
scaling factors nag_dgeequ (f07afc) nag_dgbequ (f07bfc)
condition number nag_dgecon (f07agc) nag_dgbcon (f07bgc) nag_dgtcon (f07cgc)
error estimate nag_dgerfs (f07ahc) nag_dgbrfs (f07bhc) nag_dgtrfs (f07chc)
invert nag_dgetri (f07ajc)
Mark 25 f07.15

Introduction — f07

NAG Library Manual

Type of matrix and storage scheme

Operation symmetric positive definite | symmetric positive definite [symmetric positive definite [symmetric positive definite
(packed storage) band tridiagonal
driver nag_dposv (f07fac) nag_dppsv (f07gac) nag_dpbsv (f07hac) nag_dptsv (f07jac)

expert driver

nag_dposvx (f07fbc)

nag_dppsvx (f07gbc)

nag_dpbsvx (f07hbc)

nag_dptsvx (f07jbc)

factorize

nag_dpotrf (f07fdc)

nag_dpptrf (f07gdc)

nag_dpbtrf (f07hdc)

nag_dpttrf (f07jdc)

solve

nag_dpotrs (f07fec)

nag_dpptrs (f07gec)

nag_dpbtrs (f07hec)

nag_dpttrs (f07jec)

scaling factors

nag_dpoequ (f07ffc)

nag_dppequ (f07gfc)

nag_dpbequ (f07hfc)

condition
number

nag_dpocon (f07fgc)

nag_dppcon (f07ggc)

nag_dpbcon (f07hgc)

nag_dptcon (f07jgc)

error estimate

nag_dporfs (f07fhc)

nag_dpprfs (f07ghc)

nag_dpbrfs (f07hhc)

nag_dptrfs (f07jhc)

invert

nag_dpotri (f07fjc)

nag_dpptri (f07gjc)

Type of matrix and storage scheme

Operation symmetric indefinite symmetric indefinite
(packed storage)
driver nag_dsysv (f07mac) nag_dspsv (f07pac)

expert driver

nag_dsysvx (f07mbc)

nag_dspsvx (f07pbc)

factorize

nag_dsytrf (f07mdc)

nag_dsptrf (f07pdc)

solve

nag_dsytrs (f07mec)

nag_dsptrs (f07pec)

condition number

nag_dsycon (f07mgc)

nag_dspcon (f07pgc)

error estimate

nag_dsyrfs (f07mhc)

nag_dsprfs (f07phc)

invert

nag_dsytri (f07mjc)

nag_dsptri (f07pjc)

Type of matrix and storage scheme

Operation triangular triangular (packed triangular band
storage)
solve nag_dtrtrs (f07tec) nag_dtptrs (f07uec) nag_dtbtrs (f07vec)

condition number

nag_dtrcon (f07tgc)

nag_dtpcon (f07ugc)

nag_dtbcon (f07vgc)

error estimate

nag_dtrrfs (f07thc)

nag_dtprfs (f07uhc)

nag_dtbrfs (f07vhc)

invert

nag_dtrtri (f07tjc)

nag_dtptri (f07ujc)

3.5.2 Complex matrices

Each entry gives:

the NAG function short name

the LAPACK routine name from which the NAG function long name is derived by prepending

nag_.

107.16

Type of matrix and storage scheme

Operation

general

general band

general tridiagonal

driver

nag_zgesv (f07anc)

nag_zgbsv (f07bnc)

nag_zgtsv (f07cnc)

expert driver

nag_zgesvx (f07apc)

nag_zgbsvx (f07bpc)

nag_zgtsvx (f07cpc)

mixed precision driver

nag_zcgesv (f07aqc)

factorize

nag_zgetrf (f07arc)

nag_zgbtrf (f07brc)

nag_zgttrf (f07crc)

solve

nag_zgetrs (f07asc)

nag_zgbtrs (f07bsc)

nag_zgttrs (f07csc)

scaling factors

nag_zgeequ (f07atc)

nag_zgbequ (f07btc)

condition number

nag_zgecon (f07auc)

nag_zgbcon (f07buc)

nag_zgtcon (f07cuc)

error estimate

nag_zgerfs (f07avc)

nag_zgbrfs (f07bvc)

nag_zgtrfs (f07cvc)

invert

nag_zgetri (f07awc)

Mark 25

f07 — Linear Equations (LAPACK)

Introduction — f07

Type of matrix and storage scheme

Operation Hermitian positive definite | Hermitian positive definite | Hermitian positive definite | Hermitian positive definite
(packed storage) band tridiagonal
driver nag_zposv (f07fnc) nag_zppsv (f07gnc) nag_zpbsv (f07hnc) nag_zptsv (f07jnc)

expert driver

nag_zposvx (f07fpc)

nag_zppsvx (f07gpc)

nag_zpbsvx (f07hpc)

nag_zptsvx (f07jpc)

factorize

nag_zpotrf (f07frc)

nag_zpptrf (f07grc)

nag_zpbtrf (f07hrc)

nag_zpttrf (f07jrc)

solve

nag_zpotrs (f07fsc)

nag_zpptrs (f07gsc)

nag_zpbtrs (f07hsc)

nag_zpttrs (f07jsc)

scaling factors

nag_zpoequ (f07ftc)

nag_zppequ (f07gtc)

condition
number

nag_zpocon (f07fuc)

nag_zppcon (f07guc)

nag_zpbcon (f07huc)

nag_zptcon (f07juc)

error estimate

nag_zporfs (f07fvc)

nag_zpprfs (f07gvc)

nag_zpbrfs (f07hvc)

nag_zptrfs (f07jvc)

invert nag_zpotri (f07fwc) nag_zpptri (f07gwc)
Type of matrix and storage scheme
Operation Hermitian indefinite symmetric indefinite Hermitian indefinite symmetric indefinite
(packed storage) band tridiagonal
driver nag_zhesv (f07mnc) nag_zsysv (f07nnc) nag_zhpsv (f07pnc) nag_zspsv (f07qnc)

expert driver

nag_zhesvx (f07mpc)

nag_zsysvx (f07npc)

nag_zhpsvx (f07ppc)

nag_zspsvx (f07qpc)

factorize

nag_zhetrf (f07mrc)

nag_zsytrf (f07nrc)

nag_zhptrf (f07prc)

nag_zsptrf (f07qrc)

solve

nag_zhetrs (f07msc)

nag_zsytrs (f07nsc)

nag_zhptrs (f07psc)

nag_zsptrs (f07qsc)

condition number

nag_zhecon (f07muc)

nag_zsycon (f07nuc)

nag_zhpcon (f07puc)

nag_zspcon (f07quc)

error estimate

nag_zherfs (f07mvc)

nag_zsyrfs (f07nvc)

nag_zhprfs (f07pvc)

nag_zsprfs (f07qvc)

invert

nag_zhetri (f07mwc)

nag_zsytri (f07nwc)

nag_zhptri (f07pwc)

nag_zsptri (f07qwc)

4 Functionality Index

Type of matrix and storage scheme
Operation triangular triangular (packed triangular band
storage)
solve nag_ztrtrs (f07tsc) nag_ztptrs (f07usc) nag_ztbtrs (f07vsc)

condition number

nag_ztrcon (f07tuc)

nag_ztpcon (f07uuc)

nag_ztbcon (f07vuc)

error estimate

nag_ztrrfs (f07tvc)

nag_ztprfs (f07uvc)

nag_ztbrfs (f07vvc)

invert

nag_ztrtri (f07twc)

nag_ztptri (f07uwc)

Apply iterative refinement to the solution and compute error estimates,
after factorizing the matrix of coefficients,
complex Dand MALTIXccvviieeiiiiiieeiiiieeeciiee e e e e et e e e e eerreeeesstbaaeeeeereeeens
complex Hermitian indefinite matrix

nag zgbrfs (f07bvc)
nag_zherfs (f07mvc)

complex Hermitian indefinite matrix, packed storage
complex Hermitian positive definite band matrix
complex Hermitian positive definite matrix
complex Hermitian positive definite matrix, packed storage
complex Hermitian positive definite tridiagonal matrix
complex matrix

real matrix

Mark 25

complex symmetric indefinite matrix
complex symmetric indefinite matrix, packed storage
complex tridiagonal matrix
real band matrix

real symmetric indefinite matrix
real symmetric indefinite matrix, packed storage
real symmetric positive definite band matrix
real symmetric positive definite matrix
real symmetric positive definite matrix, packed storage

nag_zhprfs (f07pvc)
nag_zpbrfs (f07hvc)
nag zporfs (f07fvc)
. nag_zpprfs (f07gvc)
nag_zptrfs (f07jvc)
nag_zgerfs (f07avc)
nag_zsyrfs (f07nvc)
. nag_zsprfs (f07qvc)
nag zgtrfs (f07cvc)
nag_dgbrfs (f07bhc)
nag_dgerfs (f07ahc)
nag_dsyrfs (f07mhc)
nag_dsprfs (f07phc)
nag_dpbrfs (f07hhc)
. nag_dporfs (f07fhc)

... nag_dpprfs (f07ghc)

f07.17

Introduction — f07 NAG Library Manual

real symmetric positive definite tridiagonal matrixXc.cccccevevevieerciieereeennee. nag_dptrfs (f07jhc)
real tridiagonal MAIIXceeeicviiiiiieiiiie ettt e e e e e eveeeeaee e nag_dgtrfs (f07chc)
Compute error estimates,
complex triangular band MAatriXccoccveviiiiiiiiiriiie e nag_ztbrfs (f07vvc)
complex trian@ular MALTTXccceeeeeieiiireeiiiiieeeeirieeeesireee e et eeeeeiraeeeesssraeeesensaeees nag_ztrrfs (f07tvc)
complex triangular matrix, packed StOTageccccocvevviieriiiieniiiieiiie e nag_ztprfs (f07uvc)
real triangular band MAtriXcoccceeeiiiiiiiiie et nag_dtbrfs (f07vhc)
real trianGUIAr MAIIXccveieiiiieeiieeeiiterieeeeiee et eeete e e e e etaeeetaeesnteeessseeenseeensneens nag_dtrrfs (f07thc)
real triangular matrix, packed StOTAZEcccceeviiieriiiieiiie et nag_dtprfs (f07uhc)
Compute row and column scalings,

comPlex Band MAIIXccceieiiuiieiiiieeeiieeiieeetee et ee e et e e ereeesbeeeebeeeseseeeeseennns nag_zgbequ (f07btc)
complex Hermitian positive definite band matriXccccoeeeeevieeeiiieniireeiieee, nag_zpbequ (f07htc)
complex Hermitian positive definite matriXcccceevvieeiiieeniieeniiieeniie e nag_zpoequ (f07ftc)
complex Hermitian positive definite matrix, packed storagecccccceeveennee. nag_zppequ (f07gtc)
COMPLEX TMALIIX Leeiiiiiiiieeiiiiiee e ettt e esscitteeeeeiteeeeeessebaeeesssssaeeesesseeeessssseesesnssseeennnes nag_zgeequ (f07atc)
real Band MALIIXccociiiiiiieiiie et e e e e e e et e e eebee e tbee e ebeeenns nag_dgbequ (f07bfc)
TEAL MNALITX 1.eviieiiieeiiieeitie et ee ettt e ettt e e e bt eeeteeesabeeesasaeesbeeesseeesseeensseesnsseesnsseennseens nag_dgeequ (f07afc)
real symmetric positive definite band matrixccccoeeveieniieeiiiieene e nag_dpbequ (f07hfc)
real symmetric positive definite MatriXcccocceeeviiieiriieiniie e nag dpoequ (f07ffc)
real symmetric positive definite matrix, packed storagecccocoevvvieinieennen. nag_dppequ (f07gfc)

Condition number estimation,
after factorizing the matrix of coefficients,

complex band MAIIXcc.eeereiieiiiieeie et eee e e e e e e eeee e nag_zgbcon (f07buc)
complex Hermitian indefinite matrixXccoocveieviiieniiieeniiieiie e nag_zhecon (f07muc)
complex Hermitian indefinite matrix, packed storageccccvveveninennnne nag_zhpcon (f07puc)
complex Hermitian positive definite band matrixcccccceevveevieeriieenneennne. nag_zpbcon (f07huc)
complex Hermitian positive definite matrixXccceeeveeviieeniiieeniiieeireenene, nag_zpocon (f07fuc)
complex Hermitian positive definite matrix, packed storage nag_zppcon (f07guc)
complex Hermitian positive definite tridiagonal matrixccccceeeeevenneennne. nag_zptcon (f07juc)
COMPIEX TNALITX +eeeuviiiiiieeiiiieeeiieeeittee e sttt e sttt e sbteesateeesateeenbbeeesnteeestaeesseeeeaneeenes nag zgecon (f07auc)
complex symmetric indefinite MatriXcccccveeeriiiereniiiieeeerieeeeeiieeeenens nag_zsycon (f07nuc)
complex symmetric indefinite matrix, packed storagecccceeveeerreennee. nag_zspcon (f07quc)
complex tridiagonal MALIIXccceeriiieriiieriiieeriie e eriee e eee e nag zgtcon (f07cuc)
real band MALTIX .oo.eeeiiieeiiie ettt e nag dgbcon (f07bgc)
TEAL MALTIX Loiiiiiiiiiieieiiieee ettt e e e ettt e e e st eeeessibbeeeeeeraeeeessesbeeeesssssaeeesnssseesenssees nag_dgecon (f07agc)
real symmetric indefinite MatriXccccceeviiiiireeiiiiiieeeeiieee e nag_dsycon (f07mgc)
real symmetric indefinite matrix, packed Storageccccccoevveevivierinneennnen. nag_dspcon (f07pgc)
real symmetric positive definite band matriXcccceeveeriiieeniiieiiieeniens nag_dpbcon (f07hgc)
real symmetric positive definite MatriXcccocceverviiieiiieeniiee e eriee e nag_dpocon (f07fgc)
real symmetric positive definite matrix, packed storagecccceecevernrene nag dppcon (f07ggc)
real symmetric positive definite tridiagonal matriXccocevviieiiiieinneen. nag_dptcon (f07jgc)
real tridiagonal MAtIIXccoevviiieiiiiieiiee et et e e esebeeeree s nag_dgtcon (f07cgc)
complex triangular band MAatriXcccccoveiiiiieiiiieeiiee e nag_ztbcon (f07vuc)
complex trianguIar MALIIXocceeeriieeniieeriee et eeeetee et e et e e saeeesbeeesaaeenes nag_ztrcon (f07tuc)
complex triangular matrix, packed StOragecccocceeviiiiiiiiieniiieeee e nag ztpcon (f07uuc)
real triangular band MAtTIXcccoeceiiiiiiiniiie e nag_dtbcon (f07vgc)
real triangular MATIXccoeeieiiiiiee et et e e eree e e et e e e ssetraeeeeennneeeeenneeas nag_dtrcon (f07tgc)
real triangular matrix, packed StOTAZEcccoviviiieiiiieeiiie et nag_dtpcon (f07ugc)

LDLT factorization,

complex Hermitian positive definite tridiagonal matrixccecceeeviieenieeennenne. nag_zpttrf (f07jrc)

real symmetric positive definite tridiagonal matriXccceceveviieerieeeniieeenieenene, nag_dpttrf (f07jdc)
LLT or UTU factorization,

complex Hermitian positive definite band matrixccccccoeviieviiieiciieiciieenieeeas nag_zpbtrf (f07hrc)

complex Hermitian positive definite matriXccccevvereeeiieeniieeriiieeeiiieenieeeevee s nag_zpotrf (f07frc)

complex Hermitian positive definite matrix, packed Storageccccccceeveveenne nag_zpptrf (f07grc)

complex Hermitian positive definite matrix, RFP storageccccccovvivenninnnnen. nag_zpftrf (f07wrc)

f07.18 Mark 25

f07 — Linear Equations (LAPACK) Introduction — f07

complex Hermitian positive semidefinite mMatriXcccceeevveeeriieeenieeriieenirie e nag_zpstrf (f07krc)
real symmetric positive definite band matriXccccoeeveieiiiiieniieenie e nag_dpbtrf (f07hdc)
real symmetric positive definite MAatriXcccccccieviieiiiieeniieeiiee e nag_dpotrf (f07fdc)
real symmetric positive definite matrix, packed storageccccccceeviieenieennne. nag_dpptrf (f07gdc)
real symmetric positive definite matrix, RFP storagecccccoevvviiiiiniiinniennns nag_dpftrf (f07wdc)
real symmetric positive semidefinite mMatriXccccocevveerriiiieeeriiireeeeiiee e nag_dpstrf (f07kdc)
LU factorization,
cOmMPIEeX BaNA MAIX ..veeriiiireiiiieeiiee ettt eetee et e et e et eeteeesetaeesesaeennsaeenns nag_zgbtrf (f07brc)
COMPIEX TMALITIX 1.uvtieiiieeeitieeeiteesitee ettt estteeetteeeseteeetteestseeseseeesnseeensseessseesseeennseenn nag_zgetrf (f07arc)
complex tridiagonal MALTIXcccvieeriiiiiireeeiiieeeeriiee e ee e e et e e e enbeeeseenreeeenes nag_zgttrf (f07crc)
real DANA MALIIX ..vviiiiiiiiiiieciie et ee ettt ettt e ebeeeebeeesabeeesebeeesbeeessaeennnes nag_dgbtrf (f07bdc)
TEAL MNALITX c.tiieiiiiieeiie et e ettt e eite e et e e et eeeetteeeetteeetteeebaeessbeeeenbeeessseeensseeeseeeanseeensns nag_dgetrf (f07adc)
real tridiagonal MAIIXcceeeiiuiiiiiieeiiie ettt e e e eebee e eb e e e eaeeeeeee e nag_dgttrf (f07cdc)

Matrix inversion,
after factorizing the matrix of coefficients,

complex Hermitian indefinite matrixXccccccoovveviiieniiieniiie e nag_zhetri (f07mwc)

complex Hermitian indefinite matrix, packed storageccccceeveiivencnennen. nag_zhptri (f07pwc)

complex Hermitian positive definite matrixXccccccceevvveeeniiieeniieennieeenieenenen. nag_zpotri (f07fwc)
complex Hermitian positive definite matrix, packed storagec.cco....... nag_zpptri (f07gwc)
complex Hermitian positive definite matrix, RFP storagecccccoevieenns nag_zpftri (f07wwc)

COMPIEX MALTIX 1eeviiiiiieeiiiiieeeeiiieeeeir et e e et e e e e s ibeeesesstrbaeeseensaeeeesnsseeesennsseeens nag_zgetri (f07awc)

complex symmetric indefinite MatriXccccceeriieeriiieeriieeiiie e eee e nag_zsytri (f07nwc)

complex symmetric indefinite matrix, packed storageccccceeeeeerveennee. nag_zsptri (f07qwc)

TEAL TNALTIX ©eeeiiiiieiiieeitie et ee et ee ettt ettt e ettt et e et e e stbeestbeeeeteesnsaeesnsaeeanseeeanneenn nag_dgetri (f07ajc)

real symmetric indefinite MAtriXccccceeviiiiiieiniiieee e e nag_dsytri (f07mijc)

real symmetric indefinite matrix, packed storageccccooeveiiiiiiniiiireennnne, nag_dsptri (f07pjc)

real symmetric positive definite MatriXccccoeviieriiiieiiiieeiiie e nag_dpotri (f07fjc)

real symmetric positive definite matrix, packed storagecccceeevvernnnnne. nag_dpptri (f07gjc)

real symmetric positive definite matrix, RFP storageccccocoevvivercineennen. nag_dpftri (f07wjc)
complex trian@ular MALTIXccceoeeviiieriiiiereeesiieeeeeeiareeeseerreeesearaeeesssnreeesssrseeeanns nag_ztrtri (f07twc)
complex triangular matrix, packed StOTagecccccceeriiiiiniiiiiiiin nag_ztptri (f07uwc)
complex triangular matrix, RFP storage,

EXPEIT ATIVET .eeiiieiiiieiiieeeiee et ettt e eetee e et e e etae e eetee e eebeeetaeeetaeeenbaeeenseeeenseeesenes nag_ztftri (f07wxc)
real trianguIAr MAIIXc.eeeicuieeiieeeiie et eeete et e s e et e e et eeeabeeeenbaeesnseeenseeenees nag_dtrtri (f07tjc)
real triangular matrix, packed StOTAZEccceeviiiiriiiieiiiieeiiie e nag_dtptri (f07ujc)
real triangular matrix, RFP storage,

EXPEIT ATIVET .eiiiiiiiiiieiiee ettt ettt ettt ettt ettt e st e e st e e it e e sab e e et eeseneaee s nag_dtftri (f07wkc)

PLDL'P" or PUDUTP" factorization,
complex Hermitian indefinite Matrixccccoooiemiiiriiiniiienienieiicenie e nag_zhetrf (f07mrc)
complex Hermitian indefinite matrix, packed Storagecccoecveviivevieencnenns nag_zhptrf (f07prc)
complex symmetric indefinite MAatriXcccceeviiiriiiireriiieeieeeiee e siee e nag_zsytrf (f07nrc)
complex symmetric indefinite matrix, packed storageccccocevriiiieriiiennnenn. nag_zsptrf (f07qrc)
real symmetric iNdefinite MAtrIXcccoeevieieiiieriieeeiie e nag_dsytrf (f07mdc)
real symmetric indefinite matrix, packed StOragecccoooceemienoeeniieniiiniienieennen. nag_dsptrf (f07pdc)

Solution of simultaneous linear equations,
after factorizing the matrix of coefficients,

complex band MAtTiXcccooiiiiiiiiiiiiee e e nag_zgbtrs (f07bsc)
complex Hermitian indefinite matriXcccocevvieiiiieniieeniieeeieeeiee e nag_zhetrs (f07msc)
complex Hermitian indefinite matrix, packed storagecccccevevieennrennne. nag_zhptrs (f07psc)
complex Hermitian positive definite band matriXccccceeveeeeevireeiieenieennne, nag_zpbtrs (f07hsc)
complex Hermitian positive definite matrixXoccoeevieeirieeniieeniieeiee e nag_zpotrs (f07fsc)
complex Hermitian positive definite matrix, packed storagec.c...... nag_zpptrs (f07gsc)
complex Hermitian positive definite matrix, RFP storageccccccooeueenneen. nag_zpftrs (f07wsc)
complex Hermitian positive definite tridiagonal matrixcccceeveiienneennne. nag_zpttrs (f07jsc)
COMPIEX MALITX 1vvvieeuiiieiiiieetieeeiieeeteeeettteesteestteesteeesnteeessseeessseeeasseesanneesseanns nag zgetrs (f07asc)
complex symmetric indefinite MatriXoccceeveuiieiiiireiiieiiiee e nag zsytrs (f07nsc)

Mark 25 f07.19

Introduction — f07 NAG Library Manual

complex symmetric indefinite matrix, packed StOrageccccoecvereveerneens nag_zsptrs (f07qsc)
complex tridiagonal MALIIXccccocceeeriiireeiiieeiieeeieeeeieeeeteeeereeesreeeereeeeaeees nag_zgttrs (f07csc)
real band MALITX ..oc.eieieiiieiiie e ettt et e e e e e nbee e nag_dgbtrs (f07bec)
TEAL MNALITX 1eeiiieiiiie ettt ettt ettt e ettt e ettt e et eesabeeetbeesebeesnsaeeensaeennsaeesnseenn nag dgetrs (f07aec)
real symmetric indefinite MAatriXoccceeeviiieiiiiriiiie e nag dsytrs (f07mec)
real symmetric indefinite matrix, packed storageccccccooviiiiiiiiieeniinnnn. nag_dsptrs (f07pec)
real symmetric positive definite band matriXccccecveieiiiiieiiieeniieeeieene, nag_dpbtrs (f07hec)
real symmetric positive definite MatriXccccoovveeriiieeniieeniieeeie e, nag_dpotrs (f07fec)
real symmetric positive definite matrix, packed storagecccceeeeverinennnne. nag_dpptrs (f07gec)
real symmetric positive definite matrix, RFP storageccccccvviierneennnen. nag_dpftrs (f07wec)
real symmetric positive definite tridiagonal matriXcccoceevvvevvcivieeennnennn. nag_dpttrs (f07jec)
real tridiagonal MAtriXccccoeeiiieiiiiiicii e nag_dgttrs (f07cec)
expert drivers (with condition and error estimation):
complex band MAIIXcccvireiiiieiiiieeiiee et e eeiee et et e e e eeaeeeebeeesreeenaeees nag_zgbsvx (f07bpc)
complex Hermitian indefinite MatrixXccccovviiriiiiiinieiniieeieeeie e nag_zhesvx (f07mpc)
complex Hermitian indefinite matrix, packed storageccccccoovvvevnnen.. nag_zhpsvx (f07ppc)
complex Hermitian positive definite band matrixcccceeevveviiienieeennnenn. nag_zpbsvx (f07hpc)
complex Hermitian positive definite matriXccceeveveeeriieeeiieeeiieenieeeeieens nag_zposvx (f07fpc)
complex Hermitian positive definite matrix, packed storage nag_zppsvx (f07gpc)
complex Hermitian positive definite tridiagonal matrixccccecevvevevveennenn. nag_zptsvx (f07jpc)
COMPIEX MALTIX .evviieeeiiiiireeiiiiteeeeetieeeesitreeeesibaeeeeestrreeeesssesseeeeenseeessssseeeensnns nag_zgesvx (f07apc)
complex symmetric indefinite MAatriXcccceeerrciiieeeriiiiiieeeiieeeeeiiee e e nag_zsysvx (f07npc)
complex symmetric indefinite matrix, packed storageccccceeveeireenen. nag_zspsvx (f07qpc)
complex tridiagonal MALIIXccccccceeriiiieriireniiierieeeeiee et e eeeaeesreeeneeens nag zgtsvx (f07cpc)
real band MAITX ...oceoiieiiiieeie ettt e nag dgbsvx (f07bbc)
TEAL TNALTIX etieeiiieeeitieettee ettt e et e e e et te e sat e e it e eabteeebeeeeteeesataeesaneenas nag dgesvx (f07abc)
real symmetric indefinite MatriXcccocceviieiiriiiireeiiiiie e eeeeee e nag_dsysvx (f07mbc)
real symmetric indefinite matrix, packed StOragecccceevvveveiiencieeennnenns nag_dspsvx (f07pbc)
real symmetric positive definite band matrixccccocceeeriiieniiieeniie e, nag_dpbsvx (f07hbc)
real symmetric positive definite MatriXccccccceevvieeiiiieeniieniieeeiie e nag_dposvx (f07fbc)
real symmetric positive definite matrix, packed storagecccccecevvreenns nag_dppsvx (f07gbc)
real symmetric positive definite tridiagonal matrixcccocceevvieernieenineennnn. nag_dptsvx (f07jbc)
real tridiagonal MAtriXccccovieiciiiiiiee et nag_dgtsvx (f07cbc)
simple drivers,
complex band MAIIXccceeicuiieiiiieeiie ettt eee e e e e e ebee e eees nag_zgbsv (f07bnc)
complex Hermitian indefinite matriXccccoeveieniiiieniiiiniiieeiie e, nag_zhesv (f07mnc)
complex Hermitian indefinite matrix, packed storagecccccccevvvverierenee. nag_zhpsv (f07pnc)
complex Hermitian positive definite band matriXcccoceevveviiiiiennecnienn. nag_zpbsv (f07hnc)
complex Hermitian positive definite matrixXccceeeeveeevceeniiieeniieeie e, nag_zposv (f07fnc)
complex Hermitian positive definite matrix, packed storageccccc....... nag_zppsv (f07gnc)
complex Hermitian positive definite tridiagonal matrixccecceeerivernnnennne nag_zptsv (f07jnc)
COMPIEX TNALITIX c.vviirutiieiiiieeieee et eeette e et e e st ee ettt e e siteeseteeesabeeesteeesnteeesnteesneeenns nag zgesv (f07anc)
complex matrix, using mixed PreCiSIONccoecccvereerriireeerriirieeenreeeeeeneneens nag_zcgesv (f07aqc)
complex symmetric indefinite MatriXcccccocveveiiieriiieeniiieeniee e e nag_zsysv (f07nnc)
complex symmetric indefinite matrix, packed StOrageccccoccevevviierernenns nag_zspsv (f07qgnc)
complex triangular band MAatriXcccccoveriiiieiiiireiiee e nag_ztbtrs (f07vsc)
complex trian@ular MALTTXccccvieeeeriiiiieeeiiiieeeeriiieeeesireeeeeerreeeseerreeeesseseeeens nag_ztrtrs (f07tsc)
complex triangular matrix, packed StOTageccoccoeriiiiiiiiiniiiinieeee e, nag_ztptrs (f07usc)
complex tridiagonal MALIIXcccccveeriiieeriieeiiie e e eeiee e e eeee e e e eeree e nag_zgtsv (f07cnc)
real DaNd MALITX ..ooccviieeiieiiiie ettt et e et e etae e et e e ebeeesebaeesnbeeesasaeenns nag_dgbsv (f07bac)
TEAL MNALIIX Loeiitiieiiieeeiiee ettt et te et ee ettt e et e e sttt e satae e nbeeesnseeennseesnsbeeesaeesnseens nag dgesv (f07aac)
real matrix, USing mMixXed PreCISIONcccccveeriiireriiieeriieeriteeeniieeeieeeeieeeniee e nag dsgesv (f07acc)
real symmetric indefinite MAtriXcccccieeiiciiieeiiiiiiee e e e nag_dsysv (f07mac)
real symmetric indefinite matrix, packed Storagec..ccccoeeviiiiniiiirenneien.n. nag_dspsv (f07pac)
real symmetric positive definite band matrixXcccccveveiireniiiiiiiiie e nag_dpbsv (f07hac)
real symmetric positive definite MatriXccccovvveeiiiiiiiiieeiiie e nag dposv (f07fac)
real symmetric positive definite matrix, packed storageccccccooveverieenne nag_dppsv (f07gac)
real symmetric positive definite tridiagonal matriXccccoeeeiiieeiciireeennnn. nag_dptsv (f07jac)
real triangular band MAatriXocoeeeiiiiiiiiiiiiii e nag_dtbtrs (f07vec)

f07.20 Mark 25

f07 — Linear Equations (LAPACK) Introduction — f07

real triangular MALTIXccciiiiiiiiiiee ettt e e et e e e e ee e e neaee e nag_dtrtrs (f07tec)
real triangular matrix, packed StOTAgecccceevvviieiiieeiiieiiieee e nag_dtptrs (f07uec)
real tridiagonal MALIIXcoccviieiiieiiiee ettt eeeee et esteeesebeeesnaee e nag_dgtsv (f07cac)

5 Auxiliary Functions Associated with Library Function Arguments

None.

6 Functions Withdrawn or Scheduled for Withdrawal

None.

7 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (1988) Algorithm 674: Fortran codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation ACM Trans. Math. Sofiware 14 381-396

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

Mark 25 f07.21 (last)

	f07 - Linear Equations (LAPACK), Chapter Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Notation
	2.2 Matrix Factorizations
	2.3 Solution of Systems of Equations
	2.4 Sensitivity and Error Analysis
	2.4.1 Normwise error bounds
	2.4.2 Estimating condition numbers
	2.4.3 Scaling and Equilibration
	2.4.4 Componentwise error bounds
	2.4.5 Iterative refinement of the solution

	2.5 Matrix Inversion
	2.6 Packed Storage Formats
	2.7 Band and Tridiagonal Matrices
	2.8 Block Partitioned Algorithms
	2.9 Mixed Precision LAPACK Routines

	3 Recommendations on Choice and Use of Available Functions
	3.1 Available Functions
	3.2 NAG Names and LAPACK Names
	3.3 Matrix Storage Schemes
	3.3.1 Conventional storage
	3.3.2 Packed storage
	3.3.3 Rectangular Full Packed (RFP) Storage
	3.3.4 Band storage
	3.3.5 Unit triangular matrices
	3.3.6 Real diagonal elements of complex matrices

	3.4 Argument Conventions
	3.4.1 Option arguments
	3.4.2 Problem dimensions

	3.5 Tables of Driver and Computational Functions
	3.5.1 Real matrices
	3.5.2 Complex matrices

	4 Functionality Index
	5 Auxiliary Functions Associated with Library Function Arguments
	6 Functions Withdrawn or Scheduled for Withdrawal
	7 References
	Anderson et al. (1999)
	Golub and Van Loan (1996)
	Higham (1988)
	Wilkinson (1965)

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

