NAG Library Function Document nag_zgtsvx (f07cpc)

1 Purpose

nag_zgtsvx (f07cpc) uses the $L U$ factorization to compute the solution to a complex system of linear equations

$$
A X=B, \quad A^{\mathrm{T}} X=B \quad \text { or } \quad A^{\mathrm{H}} X=B
$$

where A is a tridiagonal matrix of order n and X and B are n by r matrices. Error bounds on the solution and a condition estimate are also provided.

2 Specification

```
#include <nag.h>
#include <nagf07.h>
void nag_zgtsvx (Nag_OrderType order, Nag_FactoredFormType fact,
    Nag_TransType trans, Integer n, Integer nrhs, const Complex dl[],
    const Complex d[], const Complex du[], Complex dlf[], Complex df[],
    Complex duf[], Complex du2[], Integer ipiv[], const Complex b[],
    Integer pdb, Complex x[], Integer pdx, double *rcond, double ferr[],
    double berr[], NagError *fail)
```


3 Description

nag_zgtsvx (f07cpc) performs the following steps:

1. If fact $=$ Nag_NotFactored, the $L U$ decomposition is used to factor the matrix A as $A=L U$, where L is a product of permutation and unit lower bidiagonal matrices and U is upper triangular with nonzeros in only the main diagonal and first two superdiagonals.
2. If some $u_{i i}=0$, so that U is exactly singular, then the function returns with fail.errnum $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, fail.code $=$ NE_SINGULAR_WP is returned as a warning, but the function still goes on to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form of A.
4. Iterative refinement is applied to improve the computed solution matrix and to calculate error bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: order - Nag_OrderType
Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by order $=$ Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: order $=$ Nag_RowMajor or Nag_ColMajor.
2: fact - Nag_FactoredFormType
Input
On entry: specifies whether or not the factorized form of the matrix A has been supplied.
fact $=$ Nag__Factored $^{\prime}$
dlf, df, duf, du2 and ipiv contain the factorized form of the matrix A. dlf, df, duf, du2 and ipiv will not be modified.
fact $=$ Nag_NotFactored $^{\text {N }}$
The matrix A will be copied to dlf, df and duf and factorized.
Constraint: fact $=$ Nag_Factored or Nag_NotFactored.
3: \quad trans - Nag_TransType
Input
On entry: specifies the form of the system of equations.
$\boldsymbol{t r a n s}=$ Nag_NoTrans
$A X=B$ (No transpose).
$\boldsymbol{t r a n s}=$ Nag $_{-}$Trans
$A^{\mathrm{T}} X=B$ (Transpose).
trans $=$ Nag_ConjTrans
$A^{\mathrm{H}} X=B$ (Conjugate transpose).
Constraint: $\boldsymbol{t r a n s}=$ Nag_NoTrans, Nag_Trans or Nag_ConjTrans.
4: $\quad \mathbf{n}$ - Integer
Input
On entry: n, the order of the matrix A.
Constraint: $\mathbf{n} \geq 0$.

5: \quad nrhs - Integer
Input
On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.
Constraint: nrhs ≥ 0.
6: $\mathbf{d l}[$ dim $]$ - const Complex Input
Note: the dimension, dim, of the array $\mathbf{d l}$ must be at least $\max (1, \mathbf{n}-1)$.
On entry: the $(n-1)$ subdiagonal elements of A.
7: $\quad \mathbf{d}[$ dim $]$ - const Complex
Input
Note: the dimension, dim, of the array \mathbf{d} must be at least $\max (1, \mathbf{n})$.
On entry: the n diagonal elements of A.
8: $\mathbf{d u}[$ dim $]$ - const Complex Input
Note: the dimension, dim, of the array du must be at least $\max (1, \mathbf{n}-1)$.
On entry: the $(n-1)$ superdiagonal elements of A.

9: $\quad \mathbf{d l f}[$ dim $]-$ Complex
Input/Output
Note: the dimension, dim, of the array dlf must be at least $\max (1, \mathbf{n}-1)$.
On entry: if fact $=$ Nag_Factored, dlf contains the $(n-1)$ multipliers that define the matrix L from the $L U$ factorization of A.

On exit: if fact $=$ Nag_NotFactored, dlf contains the $(n-1)$ multipliers that define the matrix L from the $L U$ factorization of A.

10: $\quad \mathbf{d f}[\operatorname{dim}]-$ Complex
Input/Output
Note: the dimension, dim, of the array df must be at least $\max (1, \mathbf{n})$.
On entry: if fact $=$ Nag_Factored, df contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.

On exit: if fact $=$ Nag_NotFactored, df contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.

11: $\quad \operatorname{duf}[\mathrm{dim}]-$ Complex
Input/Output
Note: the dimension, dim, of the array duf must be at least $\max (1, \mathbf{n}-1)$.
On entry: if fact $=$ Nag_Factored, duf contains the $(n-1)$ elements of the first superdiagonal of U.

On exit: if fact $=$ Nag_NotFactored, duf contains the $(n-1)$ elements of the first superdiagonal of U.

12: du2[dim] - Complex
Input/Output
Note: the dimension, dim, of the array du2 must be at least $\max (1, \mathbf{n}-2)$.
On entry: if fact $=$ Nag_Factored, du2 contains the $(n-2)$ elements of the second superdiagonal of U.

On exit: if fact $=$ Nag_NotFactored, du2 contains the $(n-2)$ elements of the second superdiagonal of U.

13: $\quad \mathbf{i p i v}[\mathrm{dim}]$ - Integer
Input/Output
Note: the dimension, dim, of the array ipiv must be at least $\max (1, \mathbf{n})$.
On entry: if fact $=$ Nag_Factored, ipiv contains the pivot indices from the $L U$ factorization of A.
On exit: if fact $=$ Nag_NotFactored, ipiv contains the pivot indices from the $L U$ factorization of A; row i of the matrix was interchanged with row $\mathbf{i p i v}[i-1]$. $\mathbf{i p i v}[i-1]$ will always be either i or $i+1 ; \mathbf{i p i v}[i-1]=i$ indicates a row interchange was not required.

14: $\mathbf{b}[$ dim $]$ - const Complex
Input
Note: the dimension, dim, of the array \mathbf{b} must be at least

$$
\max (1, \mathbf{p d b} \times \mathbf{n r h s}) \text { when order }=\text { Nag_ColMajor; }
$$

$\max (1, \mathbf{n} \times \mathbf{p d b})$ when order $=$ Nag_RowMajor.
The (i, j) th element of the matrix B is stored in
$\mathbf{b}[(j-1) \times \mathbf{p d b}+i-1]$ when order $=$ Nag_ColMajor;
$\mathbf{b}[(i-1) \times \mathbf{p d b}+j-1]$ when order $=$ Nag_RowMajor.
On entry: the n by r right-hand side matrix B.
15:
pdb - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) in the array \mathbf{b}.

Constraints:

if order $=$ Nag_ColMajor, $\mathbf{p d b} \geq \max (1, \mathbf{n})$;
if order $=$ Nag_RowMajor, $\mathbf{p d b} \geq \max (1$, nrhs $)$.
16: $\quad \mathbf{x}[\mathrm{dim}]$ - Complex
Output
Note: the dimension, dim, of the array \mathbf{x} must be at least
$\max (1, \mathbf{p d x} \times \mathbf{n r h s})$ when order $=$ Nag_ColMajor;
$\max (1, \mathbf{n} \times \mathbf{p d x})$ when order $=$ Nag_RowMajor.
The (i, j) th element of the matrix X is stored in
$\mathbf{x}[(j-1) \times \mathbf{p d x}+i-1]$ when $\mathbf{o r d e r}=$ Nag_ColMajor;
$\mathbf{x}[(i-1) \times \mathbf{p d x}+j-1]$ when order $=$ Nag_RowMajor.
On exit: if fail.code $=$ NE_NOERROR or NE_SINGULAR_WP, the n by r solution matrix X.
17: pdx - Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array \mathbf{x}.

Constraints:

$$
\begin{aligned}
& \text { if } \text { order }=\text { Nag_ColMajor, } \mathbf{p d x} \geq \max (1, \mathbf{n}) ; \\
& \text { if order }=\text { Nag_RowMajor, } \mathbf{p d x} \geq \max (1, \mathbf{n r h s}) .
\end{aligned}
$$

18: rcond - double *
Output
On exit: the estimate of the reciprocal condition number of the matrix A. If rcond $=0.0$, the matrix may be exactly singular. This condition is indicated by fail.code $=$ NE_SINGULAR. Otherwise, if rcond is less than the machine precision, the matrix is singular to working precision. This condition is indicated by fail.code $=$ NE_SINGULAR_WP.

19: ferr[nrhs] - double
Output
On exit: if fail.code = NE_NOERROR or NE_SINGULAR_WP, an estimate of the forward error bound for each computed solution vector, such that $\left\|\hat{x}_{j}-x_{j}\right\|_{\infty} /\left\|x_{j}\right\|_{\infty} \leq \mathbf{f e r r}[j-1]$ where \hat{x}_{j} is the j th column of the computed solution returned in the array \mathbf{x} and x_{j} is the corresponding column of the exact solution X. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

20: berr[nrhs] - double
Output
On exit: if fail.code = NE_NOERROR or NE_SINGULAR_WP, an estimate of the componentwise relative backward error of each computed solution vector \hat{x}_{j} (i.e., the smallest relative change in any element of A or B that makes \hat{x}_{j} an exact solution).

21: fail - NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument $\langle v a l u e\rangle$ had an illegal value.

NE_INT

On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n} \geq 0$.
On entry, nrhs $=\langle$ value \rangle.
Constraint: nrhs ≥ 0.
On entry, $\mathbf{p d b}=\langle$ value \rangle.
Constraint: $\mathbf{p d b}>0$.
On entry, $\mathbf{p d x}=\langle$ value \rangle.
Constraint: pdx >0.

NE_INT_2

On entry, $\mathbf{p d b}=\langle$ value \rangle and $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{p d b} \geq \max (1, \mathbf{n})$.
On entry, $\mathbf{p d b}=\langle$ value \rangle and $\mathbf{n r h s}=\langle$ value \rangle.
Constraint: $\mathbf{p d b} \geq \max (1, \mathbf{n r h s})$.
On entry, $\mathbf{p d x}=\langle$ value \rangle and $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{p d x} \geq \max (1, \mathbf{n})$.
On entry, $\mathbf{p d x}=\langle$ value \rangle and $\mathbf{n r h s}=\langle$ value \rangle.
Constraint: pdx $\geq \max (1, \mathbf{n r h s})$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

NE_SINGULAR

Element $\langle v a l u e\rangle$ of the diagonal is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed. rcond $=0.0$ is returned.
Element $\langle v a l u e\rangle$ of the diagonal is exactly zero. The factorization has not been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed. rcond $=0.0$ is returned.

NE_SINGULAR_WP

U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution \hat{x} is the exact solution of a perturbed system of equations $(A+E) \hat{x}=b$, where

$$
|E| \leq c(n) \epsilon|L||U|
$$

$c(n)$ is a modest linear function of n, and ϵ is the machine precision. See Section 9.3 of Higham (2002) for further details.

If x is the true solution, then the computed solution \hat{x} satisfies a forward error bound of the form

$$
\frac{\|x-\hat{x}\|_{\infty}}{\|\hat{x}\|_{\infty}} \leq w_{c} \operatorname{cond}(A, \hat{x}, b)
$$

where $\operatorname{cond}(A, \hat{x}, b)=\left\|\left|A^{-1}\right|(|A||\hat{x}|+|b|)\right\|_{\infty} /\|\hat{x}\|_{\infty} \leq \operatorname{cond}(A)=\left\|\left|A^{-1}\right||A|\right\|_{\infty} \leq \kappa_{\infty}(A)$. If \hat{x} is the j th column of X, then w_{c} is returned in $\operatorname{berr}[j-1]$ and a bound on $\|x-\hat{x}\|_{\infty} /\|\hat{x}\|_{\infty}$ is returned in ferr $[j-1]$. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

nag_zgtsvx (f07cpc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_zgtsvx (f07cpc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations $A X=B$ is proportional to $n r$.

The condition number estimation typically requires between four and five solves and never more than eleven solves, following the factorization. The solution is then refined, and the errors estimated, using iterative refinement.

In practice the condition number estimator is very reliable, but it can underestimate the true condition number; see Section 15.3 of Higham (2002) for further details.
The real analogue of this function is nag_dgtsvx (f07cbc).

10 Example

This example solves the equations

$$
A X=B
$$

where A is the tridiagonal matrix

$$
A=\left(\begin{array}{rrrrl}
-1.3+1.3 i & 2.0-1.0 i & 0 & 0 & 0 \\
1.0-2.0 i & -1.3+1.3 i & 2.0+1.0 i & 0 & 0 \\
0 & 1.0+1.0 i & -1.3+3.3 i & -1.0+1.0 i & 0 \\
0 & 0 & 2.0-3.0 i & -0.3+4.3 i & 1.0-1.0 i \\
0 & 0 & 0 & 1.0+1.0 i & -3.3+1.3 i
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{rr}
2.4-5.0 i & 2.7+6.9 i \\
3.4+18.2 i & -6.9-5.3 i \\
-14.7+9.7 i & -6.0-0.6 i \\
31.9-7.7 i & -3.9+9.3 i \\
-1.0+1.6 i & -3.0+12.2 i
\end{array}\right) .
$$

Estimates for the backward errors, forward errors and condition number are also output.

10.1 Program Text

```
/* nag_zgtsvx (f07cpc) Example Program.
    *
    * Copyright 2014 Numerical Algorithms Group.
    *
    * Mark 23, 2011.
    */
#include <stdio.h>
#include <nag.h>
#include <nagx04.h>
#include <nag_stdlib.h>
#include <nagf07.h>
int main(void)
{
    /* Scalars */
    double rcond;
    Integer exit_status = 0, i, j, n, nrhs, pdb, pdx;
    /* Arrays */
    Complex *b = 0, *d = 0, *df = 0, *dl = 0, *dlf = 0, *du = 0, *du2 = 0;
    Complex *duf = 0, *x = 0;
    double *berr = 0, *ferr = 0;
    Integer *ipiv = 0;
    /* Nag Types */
    NagError fail;
    Nag_OrderType order;
#ifdef NAG_COLUMN_MAJOR
#define B(I, J) b[(J-1)*pdb + I - 1]
    order = Nag_ColMajor;
#else
#define B(I, J) b[(I-1)*pdb + J - 1]
    order = Nag_RowMajor;
#endif
    INIT_FAIL(fail);
    printf("nag_zgtsvx (f07cpc) Example Program Results\n\n");
    /* Skip heading in data file */
#ifdef _WIN32
    scanf_s("%*[^\n]");
#else
    scanf("%*[^\n]");
#endif
#ifdef _WIN32
    scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &n, &nrhs);
#else
    scanf("%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &n, &nrhs);
#endif
    if (n < 0 || nrhs < 0)
        {
            printf("Invalid n or nrhs\n");
            exit_status = 1;
            goto END;
        }
    /* Allocate memory */
    if (!(b = NAG_ALLOC(n * nrhs, Complex)) ||
        !(d = NAG_ALLOC(n, Complex)) ||
        !(df = NAG_ALLOC(n, Complex)) ||
        !(dl = NAG_ALLOC(n-1, Complex)) ||
        !(dlf = NAG_ALLOC(n-1, Complex)) ||
        !(du = NAG_ALLOC(n-1, Complex)) ||
        !(du2 = NAG_ALLOC(n-2, Complex)) ||
        !(duf = NAG_ALLOC(n-1, Complex)) ||
        !(x = NAG_ALLOC(n * nrhs, Complex)) ||
        !(berr = NAG_ALLOC(nrhs, double)) ||
```

```
    !(ferr = NAG_ALLOC(nrhs, double)) ||
    !(ipiv = NAG_ALLOC(n, Integer)))
    {
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
    }
#ifdef NAG_COLUMN_MAJOR
    pdb = n;
    pdx = n;
#else
    pdb = nrhs;
    pdx = nrhs;
#endif
    /* Read the tridiagonal matrix A from data file */
#ifdef _WIN32
    for (i = 0; i < n - 1; ++i) scanf_s(" ( %lf , %lf )", &du[i].re, &du[i].im);
#else
    for (i = 0; i < n - 1; ++i) scanf(" ( %lf , %lf )", &du[i].re, &du[i].im);
#endif
#ifdef _WIN32
    scanf_s("%*[^\n]");
#else
    scanf("%*[^\n]");
#endif
#ifdef _WIN32
    for (\overline{i}=0; i < n; ++i) scanf_s(" ( %lf , %lf )", &d[i].re, &d[i].im);
#else
    for (i = 0; i < n; ++i) scanf(" ( %lf , %lf )", &d[i].re, &d[i].im);
#endif
#ifdef _WIN32
    scanf_s("%*[^\n]");
#else
    scanf("%*[^\n]");
#endif
#ifdef _WIN32
    for (i = 0; i < n - l; ++i) scanf_s(" ( %lf , %lf )", &dl[i].re, &dl[i].im);
#else
    for (i = 0; i < n - l; ++i) scanf(" ( %lf , %lf )", &dl[i].re, &dl[i].im);
#endif
#ifdef _WIN32
    scanf_s("%*[^\n]");
#else
    scanf("%*[^\n]");
#endif
    /* Read the right hand matrix B */
    for (i = 1; i <= n; ++i)
            for (j = 1; j <= nrhs; ++j)
#ifdef _WIN32
            scanf_s(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
#else
            scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
#endif
#ifdef _WIN32
    scanf_s("%*[^\n]");
#else
    scanf("%*[^\n]");
#endif
    /* Solve the equations AX = B using nag_zgtsvx (f07cpc). */
    nag_zgtsvx(order, Nag_NotFactored, Nag_NoTrans, n, nrhs, dl, d, du, dlf, df,
                        duf, du2, ipiv, b, pdb, x, pdx, &rcond, ferr, berr,
                        &fail);
    if (fail.code != NE_NOERROR && fail.code != NE_SINGULAR)
        {
        printf("Error from nag_zgtsvx (f07cpc).\n%s\n", fail.message);
        exit_status = 1;
        goto END;
```

```
        }
        /* Print solution using nag_gen_complx_mat_print_comp (x04dbc). */
        fflush(stdout);
        nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
                        nrhs, x, pdx, Nag_BracketForm, "%7.4f",
                        "Solution(s)", Nag_IntegerLabels, 0,
        Nag_IntegerLabels, 0, 80, 0, 0, &fail);
    if (fail.code != NE_NOERROR)
    {
        printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
            fail.message);
        exit_status = 1;
        goto END;
    }
    /* Print solution, error bounds and condition number */
    printf("\nBackward errors (machine-dependent)\n");
    for (j = 0; j < nrhs; ++j) printf("%11.1e%s", berr[j], j%7 == 6?"\n":" ");
    printf("\n\nEstimated forward error bounds (machine-dependent)\n");
    for (j = 0; j < nrhs; ++j) printf("%11.1e%s", ferr[j], jo7 == 6?"\n":" ");
    printf("\n\nEstimate of reciprocal condition number\n%11.le\n", rcond);
    if (fail.code == NE_SINGULAR)
    printf("Error from nag_zgtsvx (f07cpc).\n%s\n", fail.message);
END:
    NAG_FREE(b);
    NAG_FREE(d);
    NAG_FREE(df);
    NAG_FREE(dl);
    NAG_FREE(dlf);
    NAG_FREE(du);
    NAG_FREE(du2);
    NAG_FREE(duf);
    NAG_FREE(x);
    NAG_FREE(berr);
    NAG_FREE(ferr);
    NAG_FREE(ipiv);
    return exit_status;
}
#undef B
```


10.2 Program Data

```
nag_zgtsvx (f07cpc) Example Program Data
5 : n, nrhs
    ( 2.0,-1.0) ( 2.0, 1.0) ( -1.0, 1.0) ( 1.0, -1.0) : du
```



```
(1.0,-2.0)(1.0, 1.0) ( 2.0, -3.0) ( 1.0, 1.0) : dl
( 2.4, -5.0) ( 2.7, 6.9)
( 3.4, 18.2) ( -6.9, -5.3)
(-14.7, 9.7) ( -6.0, -0.6)
( 31.9, -7.7) ( -3.9, 9.3)
(-1.0, 1.6) (-3.0, 12.2) : B
```


10.3 Program Results

```
nag_zgtsvx (f07cpc) Example Program Results
    Solution(s)
1 ( 1.0000, 1.0000) 1
2 ( 3.0000,-1.0000) ( 1.0000, 2.0000)
3 (4.0000, 5.0000) (-1.0000, 1.0000)
4 (-1.0000,-2.0000) ( 2.0000, 1.0000)
5 ( 1.0000,-1.0000) ( 2.0000,-2.0000)
Backward errors (machine-dependent)
    3.7e-17 6.7e-17
Estimated forward error bounds (machine-dependent)
    5.4e-14 7.3e-14
Estimate of reciprocal condition number
    5.4e-03
```

