
NAG Library Function Document

nag_dgtsvx (f07cbc)

1 Purpose

nag_dgtsvx (f07cbc) uses the LU factorization to compute the solution to a real system of linear
equations

AX ¼ B or ATX ¼ B;

where A is a tridiagonal matrix of order n and X and B are n by r matrices. Error bounds on the
solution and a condition estimate are also provided.

2 Specification

#include <nag.h>
#include <nagf07.h>

void nag_dgtsvx (Nag_OrderType order, Nag_FactoredFormType fact,
Nag_TransType trans, Integer n, Integer nrhs, const double dl[],
const double d[], const double du[], double dlf[], double df[],
double duf[], double du2[], Integer ipiv[], const double b[],
Integer pdb, double x[], Integer pdx, double *rcond, double ferr[],
double berr[], NagError *fail)

3 Description

nag_dgtsvx (f07cbc) performs the following steps:

1. If fact ¼ Nag NotFactored, the LU decomposition is used to factor the matrix A as A ¼ LU , where
L is a product of permutation and unit lower bidiagonal matrices and U is upper triangular with
nonzeros in only the main diagonal and first two superdiagonals.

2. If some uii ¼ 0, so that U is exactly singular, then the function returns with fail:errnum ¼ i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision, fail:code ¼ NE_SINGULAR_WP
is returned as a warning, but the function still goes on to solve for X and compute error bounds as
described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia
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5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: fact – Nag_FactoredFormType Input

On entry: specifies whether or not the factorized form of the matrix A has been supplied.

fact ¼ Nag Factored
dlf, df, duf, du2 and ipiv contain the factorized form of the matrix A. dlf, df, duf, du2 and
ipiv will not be modified.

fact ¼ Nag NotFactored
The matrix A will be copied to dlf, df and duf and factorized.

Constraint: fact ¼ Nag Factored or Nag NotFactored.

3: trans – Nag_TransType Input

On entry: specifies the form of the system of equations.

trans ¼ Nag NoTrans
AX ¼ B (No transpose).

trans ¼ Nag Trans or Nag ConjTrans
ATX ¼ B (Transpose).

Constraint: trans ¼ Nag NoTrans, Nag Trans or Nag ConjTrans.

4: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

5: nrhs – Integer Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: nrhs � 0.

6: dl½dim� – const double Input

Note: the dimension, dim, of the array dl must be at least max 1; n� 1ð Þ.
On entry: the n� 1ð Þ subdiagonal elements of A.

7: d½dim� – const double Input

Note: the dimension, dim, of the array d must be at least max 1; nð Þ.
On entry: the n diagonal elements of A.

8: du½dim� – const double Input

Note: the dimension, dim, of the array du must be at least max 1; n� 1ð Þ.
On entry: the n� 1ð Þ superdiagonal elements of A.
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9: dlf ½dim� – double Input/Output

Note: the dimension, dim, of the array dlf must be at least max 1;n� 1ð Þ.
On entry: if fact ¼ Nag Factored, dlf contains the n� 1ð Þ multipliers that define the matrix L
from the LU factorization of A.

On exit: if fact ¼ Nag NotFactored, dlf contains the n� 1ð Þ multipliers that define the matrix L
from the LU factorization of A.

10: df ½dim� – double Input/Output

Note: the dimension, dim, of the array df must be at least max 1;nð Þ.
On entry: if fact ¼ Nag Factored, df contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.

On exit: if fact ¼ Nag NotFactored, df contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.

11: duf ½dim� – double Input/Output

Note: the dimension, dim, of the array duf must be at least max 1;n� 1ð Þ.
On entry: if fact ¼ Nag Factored, duf contains the n� 1ð Þ elements of the first superdiagonal of
U .

On exit: if fact ¼ Nag NotFactored, duf contains the n� 1ð Þ elements of the first superdiagonal of
U .

12: du2½dim� – double Input/Output

Note: the dimension, dim, of the array du2 must be at least max 1; n� 2ð Þ.
On entry: if fact ¼ Nag Factored, du2 contains the (n� 2) elements of the second superdiagonal
of U .

On exit: if fact ¼ Nag NotFactored, du2 contains the (n� 2) elements of the second
superdiagonal of U .

13: ipiv½dim� – Integer Input/Output

Note: the dimension, dim, of the array ipiv must be at least max 1; nð Þ.
On entry: if fact ¼ Nag Factored, ipiv contains the pivot indices from the LU factorization of A.

On exit: if fact ¼ Nag NotFactored, ipiv contains the pivot indices from the LU factorization of
A; row i of the matrix was interchanged with row ipiv½i� 1�. ipiv½i� 1� will always be either i or
iþ 1; ipiv½i� 1� ¼ i indicates a row interchange was not required.

14: b½dim� – const double Input

Note: the dimension, dim, of the array b must be at least

max 1;pdb� nrhsð Þ when order ¼ Nag ColMajor;
max 1;n� pdbð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix B is stored in

b½ j� 1ð Þ � pdbþ i� 1� when order ¼ Nag ColMajor;
b½ i� 1ð Þ � pdbþ j� 1� when order ¼ Nag RowMajor.

On entry: the n by r right-hand side matrix B.

15: pdb – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array b.

f07 – Linear Equations (LAPACK) f07cbc

Mark 25 f07cbc.3



Constraints:

if order ¼ Nag ColMajor, pdb � max 1; nð Þ;
if order ¼ Nag RowMajor, pdb � max 1; nrhsð Þ.

16: x½dim� – double Output

Note: the dimension, dim, of the array x must be at least

max 1;pdx� nrhsð Þ when order ¼ Nag ColMajor;
max 1;n� pdxð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix X is stored in

x½ j� 1ð Þ � pdxþ i� 1� when order ¼ Nag ColMajor;
x½ i� 1ð Þ � pdxþ j� 1� when order ¼ Nag RowMajor.

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, the n by r solution matrix X.

17: pdx – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array x.

Constraints:

if order ¼ Nag ColMajor, pdx � max 1;nð Þ;
if order ¼ Nag RowMajor, pdx � max 1; nrhsð Þ.

18: rcond – double * Output

On exit: the estimate of the reciprocal condition number of the matrix A. If rcond ¼ 0:0, the
matrix may be exactly singular. This condition is indicated by fail:code ¼ NE_SINGULAR.
Otherwise, if rcond is less than the machine precision, the matrix is singular to working precision.
This condition is indicated by fail:code ¼ NE_SINGULAR_WP.

19: ferr½nrhs� – double Output

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, an estimate of the forward error
bound for each computed solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � ferr½j� 1� where x̂j is

the jth column of the computed solution returned in the array x and xj is the corresponding
column of the exact solution X. The estimate is as reliable as the estimate for rcond, and is
almost always a slight overestimate of the true error.

20: berr½nrhs� – double Output

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, an estimate of the component-
wise relative backward error of each computed solution vector x̂j (i.e., the smallest relative change
in any element of A or B that makes x̂j an exact solution).

21: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.
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NE_INT

On entry, n ¼ valueh i.
Constraint: n � 0.

On entry, nrhs ¼ valueh i.
Constraint: nrhs � 0.

On entry, pdb ¼ valueh i.
Constraint: pdb > 0.

On entry, pdx ¼ valueh i.
Constraint: pdx > 0.

NE_INT_2

On entry, pdb ¼ valueh i and n ¼ valueh i.
Constraint: pdb � max 1;nð Þ.
On entry, pdb ¼ valueh i and nrhs ¼ valueh i.
Constraint: pdb � max 1;nrhsð Þ.
On entry, pdx ¼ valueh i and n ¼ valueh i.
Constraint: pdx � max 1; nð Þ.
On entry, pdx ¼ valueh i and nrhs ¼ valueh i.
Constraint: pdx � max 1; nrhsð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_SINGULAR

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution and error bounds could not be computed. rcond ¼ 0:0
is returned.

Element valueh i of the diagonal is exactly zero. The factorization has not been completed, but the
factor U is exactly singular, so the solution and error bounds could not be computed. rcond ¼ 0:0
is returned.

NE_SINGULAR_WP

U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to
working precision. Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than the value of rcond
would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ej j � c nð Þ� Lj j Uj j;
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c nð Þ is a modest linear function of n, and � is the machine precision. See Section 9.3 of Higham (2002)
for further details.

If x is the true solution, then the computed solution x̂ satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
�� �� Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
�� �� Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in berr½j� 1� and a bound on x� x̂k k1= x̂k k1 is returned in
ferr½j� 1�. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

nag_dgtsvx (f07cbc) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

nag_dgtsvx (f07cbc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr.

The condition number estimation typically requires between four and five solves and never more than
eleven solves, following the factorization. The solution is then refined, and the errors estimated, using
iterative refinement.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogue of this function is nag_zgtsvx (f07cpc).

10 Example

This example solves the equations

AX ¼ B;

where A is the tridiagonal matrix

A ¼

3:0 2:1 0 0 0
3:4 2:3 �1:0 0 0
0 3:6 �5:0 1:9 0
0 0 7:0 �0:9 8:0
0 0 0 �6:0 7:1

0
BBB@

1
CCCA

and

B ¼

2:7 6:6
�0:5 10:8

2:6 �3:2
0:6 �11:2
2:7 19:1

0
BBB@

1
CCCA:

Estimates for the backward errors, forward errors and condition number are also output.
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10.1 Program Text

/* nag_dgtsvx (f07cbc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 23, 2011.
*/

#include <stdio.h>
#include <nag.h>
#include <nagx04.h>
#include <nag_stdlib.h>
#include <nagf07.h>

int main(void)
{

/* Scalars */
double rcond;
Integer exit_status = 0, i, j, n, nrhs, pdb, pdx;

/* Arrays */
double *b = 0, *berr = 0, *d = 0, *df = 0, *dl = 0, *dlf = 0, *du = 0;
double *du2 = 0, *duf = 0, *ferr = 0, *x = 0;
Integer *ipiv = 0;

/* Nag Types */
NagError fail;
Nag_OrderType order;

#ifdef NAG_COLUMN_MAJOR
#define B(I, J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define B(I, J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_dgtsvx (f07cbc) Example Program Results\n\n");
/* Skip heading in data file */

#ifdef _WIN32
scanf_s("%*[^\n]");

#else
scanf("%*[^\n]");

#endif

#ifdef _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &n, &nrhs);

#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &n, &nrhs);

#endif
if (n < 0 || nrhs < 0)

{
printf("Invalid n or nrhs\n");
exit_status = 1;
goto END;

}
/* Allocate memory */
if (!(b = NAG_ALLOC(n * nrhs, double)) ||

!(berr = NAG_ALLOC(nrhs, double)) ||
!(d = NAG_ALLOC(n, double)) ||
!(df = NAG_ALLOC(n, double)) ||
!(dl = NAG_ALLOC(n-1, double)) ||
!(dlf = NAG_ALLOC(n-1, double)) ||
!(du = NAG_ALLOC(n-1, double)) ||
!(du2 = NAG_ALLOC(n-2, double)) ||
!(duf = NAG_ALLOC(n-1, double)) ||
!(ferr = NAG_ALLOC(nrhs, double)) ||
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!(x = NAG_ALLOC(n*nrhs, double)) ||
!(ipiv = NAG_ALLOC(n, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
#ifdef NAG_COLUMN_MAJOR

pdb = n;
pdx = n;

#else
pdb = nrhs;
pdx = nrhs;

#endif
/* Read the tridiagonal matrix A from data file */

#ifdef _WIN32
for (i = 0; i < n - 1; ++i) scanf_s("%lf", &du[i]);

#else
for (i = 0; i < n - 1; ++i) scanf("%lf", &du[i]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif
#ifdef _WIN32

for (i = 0; i < n; ++i) scanf_s("%lf", &d[i]);
#else

for (i = 0; i < n; ++i) scanf("%lf", &d[i]);
#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif
#ifdef _WIN32

for (i = 0; i < n - 1; ++i) scanf_s("%lf", &dl[i]);
#else

for (i = 0; i < n - 1; ++i) scanf("%lf", &dl[i]);
#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* Read the right hand matrix B */

for (i = 1; i <= n; ++i)
#ifdef _WIN32

for (j = 1; j <= nrhs; ++j) scanf_s("%lf", &B(i, j));
#else

for (j = 1; j <= nrhs; ++j) scanf("%lf", &B(i, j));
#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* Solve the equations AX = B using nag_dgtsvx (f07cbc). */
nag_dgtsvx(order, Nag_NotFactored, Nag_NoTrans, n, nrhs, dl, d, du, dlf, df,

duf, du2, ipiv, b, pdb, x, pdx, &rcond, ferr, berr, &fail);
if (fail.code != NE_NOERROR && fail.code != NE_SINGULAR)

{
printf("Error from nag_dgtsvx (f07cbc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print solution using nag_gen_real_mat_print (x04cac). */
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fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x,

pdx, "Solution(s)", 0, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* Print solution, error bounds and condition number */
printf("\nBackward errors (machine-dependent)\n");
for (j = 0; j < nrhs; ++j) printf("%11.1e%s", berr[j], j%7 == 6?"\n":" ");

printf("\n\nEstimated forward error bounds (machine-dependent)\n");
for (j = 0; j < nrhs; ++j) printf("%11.1e%s", ferr[j], j%7 == 6?"\n":" ");

printf("\n\nEstimate of reciprocal condition number\n%11.1e\n", rcond);
if (fail.code == NE_SINGULAR)

printf("Error from nag_dgtsvx (f07cbc).\n%s\n", fail.message);
END:
NAG_FREE(b);
NAG_FREE(berr);
NAG_FREE(d);
NAG_FREE(df);
NAG_FREE(dl);
NAG_FREE(dlf);
NAG_FREE(du);
NAG_FREE(du2);
NAG_FREE(duf);
NAG_FREE(ferr);
NAG_FREE(x);
NAG_FREE(ipiv);

return exit_status;
}
#undef B

10.2 Program Data

nag_dgtsvx (f07cbc) Example Program Data
5 2 : n and nrhs

2.1 -1.0 1.9 8.0
3.0 2.3 -5.0 -0.9 7.1
3.4 3.6 7.0 -6.0 : matrix A (super, main, sub)-diags
2.7 6.6

-0.5 10.8
2.6 -3.2
0.6 -11.2
2.7 19.1 : matrix B

10.3 Program Results

nag_dgtsvx (f07cbc) Example Program Results

Solution(s)
1 2

1 -4.0000 5.0000
2 7.0000 -4.0000
3 3.0000 -3.0000
4 -4.0000 -2.0000
5 -3.0000 1.0000

Backward errors (machine-dependent)
7.2e-17 5.9e-17
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Estimated forward error bounds (machine-dependent)
9.4e-15 1.4e-14

Estimate of reciprocal condition number
1.1e-02
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