
NAG Library Function Document

nag_dgtsvx (f07cbc)

1 Purpose

nag_dgtsvx (f07cbc) uses the LU factorization to compute the solution to a real system of linear
equations

AX ¼ B or ATX ¼ B;

where A is a tridiagonal matrix of order n and X and B are n by r matrices. Error bounds on the
solution and a condition estimate are also provided.

2 Specification

#include <nag.h>
#include <nagf07.h>

void nag_dgtsvx (Nag_OrderType order, Nag_FactoredFormType fact,
Nag_TransType trans, Integer n, Integer nrhs, const double dl[],
const double d[], const double du[], double dlf[], double df[],
double duf[], double du2[], Integer ipiv[], const double b[],
Integer pdb, double x[], Integer pdx, double *rcond, double ferr[],
double berr[], NagError *fail)

3 Description

nag_dgtsvx (f07cbc) performs the following steps:

1. If fact ¼ Nag NotFactored, the LU decomposition is used to factor the matrix A as A ¼ LU , where
L is a product of permutation and unit lower bidiagonal matrices and U is upper triangular with
nonzeros in only the main diagonal and first two superdiagonals.

2. If some uii ¼ 0, so that U is exactly singular, then the function returns with fail:errnum ¼ i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision, fail:code ¼ NE_SINGULAR_WP
is returned as a warning, but the function still goes on to solve for X and compute error bounds as
described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and to calculate error
bounds and backward error estimates for it.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

f07 – Linear Equations (LAPACK) f07cbc

Mark 25 f07cbc.1

http://www.netlib.org/lapack/lug

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: fact – Nag_FactoredFormType Input

On entry: specifies whether or not the factorized form of the matrix A has been supplied.

fact ¼ Nag Factored
dlf, df, duf, du2 and ipiv contain the factorized form of the matrix A. dlf, df, duf, du2 and
ipiv will not be modified.

fact ¼ Nag NotFactored
The matrix A will be copied to dlf, df and duf and factorized.

Constraint: fact ¼ Nag Factored or Nag NotFactored.

3: trans – Nag_TransType Input

On entry: specifies the form of the system of equations.

trans ¼ Nag NoTrans
AX ¼ B (No transpose).

trans ¼ Nag Trans or Nag ConjTrans
ATX ¼ B (Transpose).

Constraint: trans ¼ Nag NoTrans, Nag Trans or Nag ConjTrans.

4: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

5: nrhs – Integer Input

On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: nrhs � 0.

6: dl½dim� – const double Input

Note: the dimension, dim, of the array dl must be at least max 1; n� 1ð Þ.
On entry: the n� 1ð Þ subdiagonal elements of A.

7: d½dim� – const double Input

Note: the dimension, dim, of the array d must be at least max 1; nð Þ.
On entry: the n diagonal elements of A.

8: du½dim� – const double Input

Note: the dimension, dim, of the array du must be at least max 1; n� 1ð Þ.
On entry: the n� 1ð Þ superdiagonal elements of A.

f07cbc NAG Library Manual

f07cbc.2 Mark 25

9: dlf ½dim� – double Input/Output

Note: the dimension, dim, of the array dlf must be at least max 1;n� 1ð Þ.
On entry: if fact ¼ Nag Factored, dlf contains the n� 1ð Þ multipliers that define the matrix L
from the LU factorization of A.

On exit: if fact ¼ Nag NotFactored, dlf contains the n� 1ð Þ multipliers that define the matrix L
from the LU factorization of A.

10: df ½dim� – double Input/Output

Note: the dimension, dim, of the array df must be at least max 1;nð Þ.
On entry: if fact ¼ Nag Factored, df contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.

On exit: if fact ¼ Nag NotFactored, df contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.

11: duf ½dim� – double Input/Output

Note: the dimension, dim, of the array duf must be at least max 1;n� 1ð Þ.
On entry: if fact ¼ Nag Factored, duf contains the n� 1ð Þ elements of the first superdiagonal of
U .

On exit: if fact ¼ Nag NotFactored, duf contains the n� 1ð Þ elements of the first superdiagonal of
U .

12: du2½dim� – double Input/Output

Note: the dimension, dim, of the array du2 must be at least max 1; n� 2ð Þ.
On entry: if fact ¼ Nag Factored, du2 contains the (n� 2) elements of the second superdiagonal
of U .

On exit: if fact ¼ Nag NotFactored, du2 contains the (n� 2) elements of the second
superdiagonal of U .

13: ipiv½dim� – Integer Input/Output

Note: the dimension, dim, of the array ipiv must be at least max 1; nð Þ.
On entry: if fact ¼ Nag Factored, ipiv contains the pivot indices from the LU factorization of A.

On exit: if fact ¼ Nag NotFactored, ipiv contains the pivot indices from the LU factorization of
A; row i of the matrix was interchanged with row ipiv½i� 1�. ipiv½i� 1� will always be either i or
iþ 1; ipiv½i� 1� ¼ i indicates a row interchange was not required.

14: b½dim� – const double Input

Note: the dimension, dim, of the array b must be at least

max 1;pdb� nrhsð Þ when order ¼ Nag ColMajor;
max 1;n� pdbð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix B is stored in

b½ j� 1ð Þ � pdbþ i� 1� when order ¼ Nag ColMajor;
b½ i� 1ð Þ � pdbþ j� 1� when order ¼ Nag RowMajor.

On entry: the n by r right-hand side matrix B.

15: pdb – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array b.

f07 – Linear Equations (LAPACK) f07cbc

Mark 25 f07cbc.3

Constraints:

if order ¼ Nag ColMajor, pdb � max 1; nð Þ;
if order ¼ Nag RowMajor, pdb � max 1; nrhsð Þ.

16: x½dim� – double Output

Note: the dimension, dim, of the array x must be at least

max 1;pdx� nrhsð Þ when order ¼ Nag ColMajor;
max 1;n� pdxð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix X is stored in

x½ j� 1ð Þ � pdxþ i� 1� when order ¼ Nag ColMajor;
x½ i� 1ð Þ � pdxþ j� 1� when order ¼ Nag RowMajor.

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, the n by r solution matrix X.

17: pdx – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array x.

Constraints:

if order ¼ Nag ColMajor, pdx � max 1;nð Þ;
if order ¼ Nag RowMajor, pdx � max 1; nrhsð Þ.

18: rcond – double * Output

On exit: the estimate of the reciprocal condition number of the matrix A. If rcond ¼ 0:0, the
matrix may be exactly singular. This condition is indicated by fail:code ¼ NE_SINGULAR.
Otherwise, if rcond is less than the machine precision, the matrix is singular to working precision.
This condition is indicated by fail:code ¼ NE_SINGULAR_WP.

19: ferr½nrhs� – double Output

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, an estimate of the forward error
bound for each computed solution vector, such that x̂j � xj

�� ��
1= xj
�� ��

1 � ferr½j� 1� where x̂j is

the jth column of the computed solution returned in the array x and xj is the corresponding
column of the exact solution X. The estimate is as reliable as the estimate for rcond, and is
almost always a slight overestimate of the true error.

20: berr½nrhs� – double Output

On exit: if fail:code ¼ NE_NOERROR or NE_SINGULAR_WP, an estimate of the component-
wise relative backward error of each computed solution vector x̂j (i.e., the smallest relative change
in any element of A or B that makes x̂j an exact solution).

21: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

f07cbc NAG Library Manual

f07cbc.4 Mark 25

NE_INT

On entry, n ¼ valueh i.
Constraint: n � 0.

On entry, nrhs ¼ valueh i.
Constraint: nrhs � 0.

On entry, pdb ¼ valueh i.
Constraint: pdb > 0.

On entry, pdx ¼ valueh i.
Constraint: pdx > 0.

NE_INT_2

On entry, pdb ¼ valueh i and n ¼ valueh i.
Constraint: pdb � max 1;nð Þ.
On entry, pdb ¼ valueh i and nrhs ¼ valueh i.
Constraint: pdb � max 1;nrhsð Þ.
On entry, pdx ¼ valueh i and n ¼ valueh i.
Constraint: pdx � max 1; nð Þ.
On entry, pdx ¼ valueh i and nrhs ¼ valueh i.
Constraint: pdx � max 1; nrhsð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_SINGULAR

Element valueh i of the diagonal is exactly zero. The factorization has been completed, but the
factor U is exactly singular, so the solution and error bounds could not be computed. rcond ¼ 0:0
is returned.

Element valueh i of the diagonal is exactly zero. The factorization has not been completed, but the
factor U is exactly singular, so the solution and error bounds could not be computed. rcond ¼ 0:0
is returned.

NE_SINGULAR_WP

U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to
working precision. Nevertheless, the solution and error bounds are computed because there are a
number of situations where the computed solution can be more accurate than the value of rcond
would suggest.

7 Accuracy

For each right-hand side vector b, the computed solution x̂ is the exact solution of a perturbed system of
equations Aþ Eð Þx̂ ¼ b, where

Ej j � c nð Þ� Lj j Uj j;

f07 – Linear Equations (LAPACK) f07cbc

Mark 25 f07cbc.5

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 9.3 of Higham (2002)
for further details.

If x is the true solution, then the computed solution x̂ satisfies a forward error bound of the form

x� x̂k k1
x̂k k1

� wc cond A; x̂; bð Þ

where cond A; x̂; bð Þ ¼ A�1
�� �� Aj j x̂j j þ bj jð Þ
�� ��

1= x̂k k1 � cond Að Þ ¼ A�1
�� �� Aj j�� ��

1 � �1 Að Þ. If x̂ is the
jth column of X, then wc is returned in berr½j� 1� and a bound on x� x̂k k1= x̂k k1 is returned in
ferr½j� 1�. See Section 4.4 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

nag_dgtsvx (f07cbc) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

nag_dgtsvx (f07cbc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations AX ¼ B is proportional to
nr.

The condition number estimation typically requires between four and five solves and never more than
eleven solves, following the factorization. The solution is then refined, and the errors estimated, using
iterative refinement.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogue of this function is nag_zgtsvx (f07cpc).

10 Example

This example solves the equations

AX ¼ B;

where A is the tridiagonal matrix

A ¼

3:0 2:1 0 0 0
3:4 2:3 �1:0 0 0
0 3:6 �5:0 1:9 0
0 0 7:0 �0:9 8:0
0 0 0 �6:0 7:1

0
BBB@

1
CCCA

and

B ¼

2:7 6:6
�0:5 10:8

2:6 �3:2
0:6 �11:2
2:7 19:1

0
BBB@

1
CCCA:

Estimates for the backward errors, forward errors and condition number are also output.

f07cbc NAG Library Manual

f07cbc.6 Mark 25

10.1 Program Text

/* nag_dgtsvx (f07cbc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 23, 2011.
*/

#include <stdio.h>
#include <nag.h>
#include <nagx04.h>
#include <nag_stdlib.h>
#include <nagf07.h>

int main(void)
{

/* Scalars */
double rcond;
Integer exit_status = 0, i, j, n, nrhs, pdb, pdx;

/* Arrays */
double *b = 0, *berr = 0, *d = 0, *df = 0, *dl = 0, *dlf = 0, *du = 0;
double *du2 = 0, *duf = 0, *ferr = 0, *x = 0;
Integer *ipiv = 0;

/* Nag Types */
NagError fail;
Nag_OrderType order;

#ifdef NAG_COLUMN_MAJOR
#define B(I, J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define B(I, J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_dgtsvx (f07cbc) Example Program Results\n\n");
/* Skip heading in data file */

#ifdef _WIN32
scanf_s("%*[^\n]");

#else
scanf("%*[^\n]");

#endif

#ifdef _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &n, &nrhs);

#else
scanf("%"NAG_IFMT"%"NAG_IFMT"%*[^\n]", &n, &nrhs);

#endif
if (n < 0 || nrhs < 0)

{
printf("Invalid n or nrhs\n");
exit_status = 1;
goto END;

}
/* Allocate memory */
if (!(b = NAG_ALLOC(n * nrhs, double)) ||

!(berr = NAG_ALLOC(nrhs, double)) ||
!(d = NAG_ALLOC(n, double)) ||
!(df = NAG_ALLOC(n, double)) ||
!(dl = NAG_ALLOC(n-1, double)) ||
!(dlf = NAG_ALLOC(n-1, double)) ||
!(du = NAG_ALLOC(n-1, double)) ||
!(du2 = NAG_ALLOC(n-2, double)) ||
!(duf = NAG_ALLOC(n-1, double)) ||
!(ferr = NAG_ALLOC(nrhs, double)) ||

f07 – Linear Equations (LAPACK) f07cbc

Mark 25 f07cbc.7

!(x = NAG_ALLOC(n*nrhs, double)) ||
!(ipiv = NAG_ALLOC(n, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
#ifdef NAG_COLUMN_MAJOR

pdb = n;
pdx = n;

#else
pdb = nrhs;
pdx = nrhs;

#endif
/* Read the tridiagonal matrix A from data file */

#ifdef _WIN32
for (i = 0; i < n - 1; ++i) scanf_s("%lf", &du[i]);

#else
for (i = 0; i < n - 1; ++i) scanf("%lf", &du[i]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif
#ifdef _WIN32

for (i = 0; i < n; ++i) scanf_s("%lf", &d[i]);
#else

for (i = 0; i < n; ++i) scanf("%lf", &d[i]);
#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif
#ifdef _WIN32

for (i = 0; i < n - 1; ++i) scanf_s("%lf", &dl[i]);
#else

for (i = 0; i < n - 1; ++i) scanf("%lf", &dl[i]);
#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* Read the right hand matrix B */

for (i = 1; i <= n; ++i)
#ifdef _WIN32

for (j = 1; j <= nrhs; ++j) scanf_s("%lf", &B(i, j));
#else

for (j = 1; j <= nrhs; ++j) scanf("%lf", &B(i, j));
#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* Solve the equations AX = B using nag_dgtsvx (f07cbc). */
nag_dgtsvx(order, Nag_NotFactored, Nag_NoTrans, n, nrhs, dl, d, du, dlf, df,

duf, du2, ipiv, b, pdb, x, pdx, &rcond, ferr, berr, &fail);
if (fail.code != NE_NOERROR && fail.code != NE_SINGULAR)

{
printf("Error from nag_dgtsvx (f07cbc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print solution using nag_gen_real_mat_print (x04cac). */

f07cbc NAG Library Manual

f07cbc.8 Mark 25

fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x,

pdx, "Solution(s)", 0, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* Print solution, error bounds and condition number */
printf("\nBackward errors (machine-dependent)\n");
for (j = 0; j < nrhs; ++j) printf("%11.1e%s", berr[j], j%7 == 6?"\n":" ");

printf("\n\nEstimated forward error bounds (machine-dependent)\n");
for (j = 0; j < nrhs; ++j) printf("%11.1e%s", ferr[j], j%7 == 6?"\n":" ");

printf("\n\nEstimate of reciprocal condition number\n%11.1e\n", rcond);
if (fail.code == NE_SINGULAR)

printf("Error from nag_dgtsvx (f07cbc).\n%s\n", fail.message);
END:
NAG_FREE(b);
NAG_FREE(berr);
NAG_FREE(d);
NAG_FREE(df);
NAG_FREE(dl);
NAG_FREE(dlf);
NAG_FREE(du);
NAG_FREE(du2);
NAG_FREE(duf);
NAG_FREE(ferr);
NAG_FREE(x);
NAG_FREE(ipiv);

return exit_status;
}
#undef B

10.2 Program Data

nag_dgtsvx (f07cbc) Example Program Data
5 2 : n and nrhs

2.1 -1.0 1.9 8.0
3.0 2.3 -5.0 -0.9 7.1
3.4 3.6 7.0 -6.0 : matrix A (super, main, sub)-diags
2.7 6.6

-0.5 10.8
2.6 -3.2
0.6 -11.2
2.7 19.1 : matrix B

10.3 Program Results

nag_dgtsvx (f07cbc) Example Program Results

Solution(s)
1 2

1 -4.0000 5.0000
2 7.0000 -4.0000
3 3.0000 -3.0000
4 -4.0000 -2.0000
5 -3.0000 1.0000

Backward errors (machine-dependent)
7.2e-17 5.9e-17

f07 – Linear Equations (LAPACK) f07cbc

Mark 25 f07cbc.9

Estimated forward error bounds (machine-dependent)
9.4e-15 1.4e-14

Estimate of reciprocal condition number
1.1e-02

f07cbc NAG Library Manual

f07cbc.10 (last) Mark 25

	f07cbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Anderson et al. (1999)
	Golub and Van Loan (1996)
	Higham (2002)

	5 Arguments
	order
	fact
	trans
	n
	nrhs
	dl
	d
	du
	dlf
	df
	duf
	du2
	ipiv
	b
	pdb
	x
	pdx
	rcond
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_SINGULAR
	NE_SINGULAR_WP

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

