f01 — Matrix Factorizations f01jjc

NAG Library Function Document

nag_matop_real gen_matrix_cond_log (f01jjc)

1 Purpose

nag matop_real gen matrix cond log (f0ljjc) computes an estimate of the relative condition number
Kiog(A) of the logarithm of a real n by n matrix A, in the 1-norm. The principal matrix logarithm log (A)
is also returned.

2 Specification

#include <nag.h>
#include <nagf01l.h>

void nag_matop_real_gen_matrix_cond_log (Integer n, double a[], Integer pda,
double *condla, NagError *fail)

3 Description

For a matrix with no eigenvalues on the closed negative real line, the principal matrix logarithm log (A)
is the unique logarithm whose spectrum lies in the strip {z: —7 < Im(2) < 7}.

The Fréchet derivative of the matrix logarithm of A is the unique linear mapping F—L (A, E) such that
for any matrix E

log (A + E) —log(A) — L (A, E) = o (|| El]).
The derivative describes the first order effect of perturbations in A on the logarithm log (A).
The relative condition number of the matrix logarithm can be defined by
ILCA AT
Klog(A) = T2 =
) [log (A)]|
where ||L(A)|| is the norm of the Fréchet derivative of the matrix logarithm at A.

To obtain the estimate of xiog(A), nag_matop_real gen matrix_cond_log (f01jjc) first estimates || L(A)||
by computing an estimate y of a quantity K € [n~!||L(A)||;,n|[L(A)|], such that v < K.

The algorithms used to compute kjoe(A) and log(A) are based on a Schur decomposition, the inverse
scaling and squaring method and Padé approximants. Further details can be found in Al-Mohy and
Higham (2011) and Al-Mohy et al. (2012).

4 References

Al-Mohy A H and Higham N J (2011) Improved inverse scaling and squaring algorithms for the matrix
logarithm SIAM J. Sci. Comput. 34(4) C152—-C169

Al-Mohy A H, Higham N J and Relton S D (2012) Computing the Fréchet derivative of the matrix
logarithm and estimating the condition number MIMS EPrint 2012.72

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

Mark 25 foljje.1

f01jjc NAG Library Manual

2: a[dim] — double Input/Output
Note: the dimension, dim, of the array a must be at least pda x n.
The (4, j)th element of the matrix A is stored in a[(j — 1) x pda +1i — 1].
On entry: the n by n matrix A.
On exit: the n by n principal matrix logarithm, log (A).

3: pda — Integer Input
On entry: the stride separating matrix row elements in the array a.

Constraint: pda > n.

4: condla — double * Output
On exit: with fail.code = NE_ NOERROR or NW_SOME PRECISION LOSS, an estimate of the

relative condition number of the matrix logarithm, kjo(A). Alternatively, if fail.code =
NE_RCOND, contains the absolute condition number of the matrix logarithm.

5: fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

See Section 3.2.1.2 in the Essential Introduction for further information.
NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_INT
On entry, n = (value).
Constraint: n > 0.
NE_INT 2
On entry, pda = (value) and n = (value).
Constraint: pda > n.
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
NE_NEGATIVE_EIGVAL

A has eigenvalues on the negative real line. The principal logarithm is not defined in this case;
nag_matop_complex gen matrix_cond log (f0lkjc) can be used to return a complex, non-
principal log.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

foljje.2 Mark 25

f01 — Matrix Factorizations f01jjc

NE_RCOND

The relative condition number is infinite. The absolute condition number was returned instead.

NE_SINGULAR

A is singular so the logarithm cannot be computed.

NW_SOME_PRECISION_LOSS

log (A) has been computed using an IEEE double precision Padé approximant, although the
arithmetic precision is higher than IEEE double precision.

7 Accuracy

nag matop_real gen matrix_cond log (fOljjc) uses the norm estimation function
nag linsys real gen norm_rcomm (f04ydc) to produce an estimate y of a quantity
K € [n7YL(A)||;,n||L(A)],], such that v < K. For further details on the accuracy of norm estimation,
see the documentation for nag_linsys real gen norm_rcomm (f04ydc).

For a normal matrix A (for which ATA = AAT), the Schur decomposition is diagonal and the
computation of the matrix logarithm reduces to evaluating the logarithm of the eigenvalues of A and
then constructing log (A) using the Schur vectors. This should give a very accurate result. In general,
however, no error bounds are available for the algorithm. The sensitivity of the computation of log (A) is
worst when A has an eigenvalue of very small modulus or has a complex conjugate pair of eigenvalues
lying close to the negative real axis. See Al-Mohy and Higham (2011) and Section 11.2 of Higham
(2008) for details and further discussion.

8 Parallelism and Performance

nag matop_real gen matrix_cond log (f0ljjc) is threaded by NAG for parallel execution in multi-
threaded implementations of the NAG Library.

nag_matop_real gen matrix_cond log (f01jjc) makes calls to BLAS and/or LAPACK routines, which
may be threaded within the vendor library used by this implementation. Consult the documentation for
the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

nag matop real gen matrix cond std (fOljac) wuses a similar algorithm to
nag_matop_real gen matrix _cond log (f01jjc) to compute an estimate of the absolute condition number
(which is related to the relative condition number by a factor of || A||/|[log (4)|]). However, the required
Fréchet derivatives are computed in a more efficient and stable manner by
nag matop_real gen matrix_cond log (fOljjc) and so its use is recommended over
nag_matop_real gen matrix_cond std (f01jac).

The amount of real allocatable memory required by the algorithm is typically of the order 10n2.
The cost of the algorithm is O(n?) floating-point operations; see Al-Mohy et al. (2012).

If the matrix logarithm alone is required, without an estimate of the condition number, then
nag_matop_real gen matrix_log (f0lejc) should be used. If the Fréchet derivative of the matrix
logarithm is required then nag matop real gen matrix frcht log (f01jkc) should be used. If A has
negative real eigenvalues then nag_matop complex gen matrix_cond log (f01kjc) can be used to return
a complex, non-principal matrix logarithm and its condition number.

Mark 25 fOljje.3

f01jjc NAG Library Manual

10 Example
This example estimates the relative condition number of the matrix logarithm log (A), where
4 -1 0 1
A= % 1 _g ~1
2 0 2

10.1 Program Text

/* nag_matop_real_gen_matrix_cond_log (£f01jjc) Example Program.
*

* Copyright 2014 Numerical Algorithms Group.
*

* Mark 24, 2013.

*/

#include <nag.h>

#include <nag_stdlib.h>

#include <nagf0l.h>

#include <nagx04.h>

#define A(I,J) al[J*pda + II

int main(void)

{
/* Scalars */
Integer exit_status = 0;
Integer i, 3, n;
Integer pda;
double condla;
/* Arrays */
double *a = 0;

/* Nag Types */
Nag_OrderType order = Nag_ColMajor;
NagError fail;

INIT FAIL(fail);

/* Output preamble */
printf ("nag_matop_real_gen_matrix_cond_log (£01jjc) ");
printf ("Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("s*[*\n] ");
#else

scanf ("s*[*\n] ");
#endif

/* Read in the problem size */
#ifdef _WIN32

scanf_s("$"NAG_IFMT"%*["\n] ", &n);
#else
scanf ("$"NAG_IFMT"s*[*\n] ", &n);
#endif
pda = n;
if (!(a = NAG_ALLOC(pda*n, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
¥

/* Read in the matrix A from data file */
for (i = 0; 1 < nj; i++)
for (3 = 0; j < n; j++)
#ifdef _WIN32
scanf_s("%1f", &A(i, j));

fOljjc.4 Mark 25

f01 — Matrix Factorizations f01jjc

#else
scanf ("s1f", &A(i, j));
#endif
#ifdef _WIN32
scanf_s("$*[*\n] ");
#else
scanf ("s*["\n] ");
#endif

/* Find log(A) and the condition number using
* nag_matop_real_gen_matrix_cond_log (f01jjc)
* Condition number for real matrix logarithm

*/
nag_matop_real_gen _matrix_cond_log(n, a, pda, &condla, &fail);
if (fail.code != NE_NOERROR) {

printf ("Error from nag_matop_real gen_matrix_cond_log (£f01jjc)\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}

/* Print matrix log(A) using nag_gen_real_mat_print (xO4cac)
* Print real general matrix (easy-to-use)
*/
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
a, pda, "log(a)", 0, &fail);

if (fail.code != NE_NOERROR) {
printf ("Error from nag_gen_real_mat_print (x0O4cac)\n%s\n", fail.message);
exit_status = 2;

}

/* Print relative condition number estimate */
printf ("Estimated relative condition number is: %7.2f\n", condla);

END:
NAG_FREE (a) ;

return exit_status;

10.2 Program Data

nag_matop_real_gen_matrix_cond_log (f0ljjc) Example Program Data

4 :Value of n

4.0 -1.0 0.0 1.0

2.0 5.0 -2.0 2.0

1.0 1.0 3.0 -1.0

2.0 0.0 2.0 8.0 :End of matrix a

10.3 Program Results

nag_matop_real_gen_matrix_cond_log (f0l1jjc) Example Program Results

log(a)
1 2 3 4
1 1.4081 -0.2051 -0.1071 0.1904
2 0.4396 1.7096 -0.5147 0.2226
3 0.2560 0.2613 1.2485 -0.2413
4 0.3030 -0.0107 0.3834 2.0891
Estimated relative condition number is: 5.50

Mark 25 fOljje.5 (last)

	f01jjc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Al-Mohy and Higham (2011)
	Al-Mohy et al. (2012)
	Higham (2008)

	5 Arguments
	n
	a
	pda
	condla
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NEGATIVE_EIGVAL
	NE_NO_LICENCE
	NE_RCOND
	NE_SINGULAR
	NW_SOME_PRECISION_LOSS

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

