
NAG Library Function Document

nag_matop_real_gen_matrix_cond_sqrt (f01jdc)

1 Purpose

nag_matop_real_gen_matrix_cond_sqrt (f01jdc) computes an estimate of the relative condition number
�A1=2 and a bound on the relative residual, in the Frobenius norm, for the square root of a real n by n

matrix A. The principal square root, A1=2, of A is also returned.

2 Specification

#include <nag.h>
#include <nagf01.h>

void nag_matop_real_gen_matrix_cond_sqrt (Integer n, double a[],
Integer pda, double *alpha, double *condsa, NagError *fail)

3 Description

For a matrix with no eigenvalues on the closed negative real line, the principal matrix square root, A1=2,
of A is the unique square root with eigenvalues in the right half-plane.

The Fréchet derivative of a matrix function A1=2 in the direction of the matrix E is the linear function
mapping E to L A;Eð Þ such that

Aþ Eð Þ1=2 �A1=2 � L A;Eð Þ ¼ o Ak kð Þ:
The absolute condition number is given by the norm of the Fréchet derivative which is defined by

L Að Þk k :¼ max
E 6¼0

L A;Eð Þk k
Ek k :

The Fréchet derivative is linear in E and can therefore be written as

vec L A;Eð Þð Þ ¼ K Að Þvec Eð Þ;

where the vec operator stacks the columns of a matrix into one vector, so that K Að Þ is n2 � n2.

nag_matop_real_gen_matrix_cond_sqrt (f01jdc) uses Algorithm 3.20 from Higham (2008) to compute an
estimate � such that � � K Xð Þk kF . The quantity of � provides a good approximation to L Að Þk kF . The
relative condition number, �A1=2 , is then computed via

�A1=2 ¼ L Að Þk kF Ak kF
A1=2k kF

:

�A1=2 is returned in the argument condsa.

A1=2 is computed using the algorithm described in Higham (1987). This is a real arithmetic version of
the algorithm of Björck and Hammarling (1983). In addition, a blocking scheme described in Deadman
et al. (2013) is used.

The computed quantity � is a measure of the stability of the relative residual (see Section 7). It is
computed via

� ¼
A1=2
�� ��2

F

Ak kF
:

f01 – Matrix Factorizations f01jdc

Mark 25 f01jdc.1



4 References

Björck Å and Hammarling S (1983) A Schur method for the square root of a matrix Linear Algebra
Appl. 52/53 127–140

Deadman E, Higham N J and Ralha R (2013) Blocked Schur Algorithms for Computing the Matrix
Square Root Applied Parallel and Scientific Computing: 11th International Conference, (PARA 2012,
Helsinki, Finland) P. Manninen and P. Öster, Eds Lecture Notes in Computer Science 7782 171–181
Springer–Verlag

Higham N J (1987) Computing real square roots of a real matrix Linear Algebra Appl. 88/89 405–430

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

2: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least pda� n.

The i; jð Þth element of the matrix A is stored in a½ j� 1ð Þ � pdaþ i� 1�.
On entry: the n by n matrix A.

On exit: contains, if fail:code ¼ NE_NOERROR, the n by n principal matrix square root, A1=2.
Alternatively, if fail:code ¼ NE_EIGENVALUES, contains an n by n non-principal square root of
A.

3: pda – Integer Input

On entry: the stride separating matrix row elements in the array a.

Constraint: pda � n.

4: alpha – double * Output

On exit: an estimate of the stability of the relative residual for the computed principal (if
fail:code ¼ NE_NOERROR) or non-principal (if fail:code ¼ NE_EIGENVALUES) matrix square
root, �.

5: condsa – double * Output

On exit: an estimate of the relative condition number, in the Frobenius norm, of the principal (if
fail:code ¼ NE_NOERROR) or non-principal (if fail:code ¼ NE_EIGENVALUES) matrix square
root at A, �A1=2 .

6: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALG_FAIL

An error occurred when computing the condition number. The matrix square root was still
returned but you should use nag_matop_real_gen_matrix_sqrt (f01enc) to check if it is the
principal matrix square root.

f01jdc NAG Library Manual

f01jdc.2 Mark 25



An error occurred when computing the matrix square root. Consequently, alpha and condsa could
not be computed. It is likely that the function was called incorrectly.

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_EIGENVALUES

A has a semisimple vanishing eigenvalue. A non-principal square root was returned.

NE_INT

On entry, n ¼ valueh i.
Constraint: n � 0.

NE_INT_2

On entry, pda ¼ valueh i and n ¼ valueh i.
Constraint: pda � n.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NEGATIVE_EIGVAL

A has a negative real eigenvalue. The principal square root is not defined.
nag_matop_complex_gen_matrix_cond_sqrt (f01kdc) can be used to return a complex, non-
principal square root.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_SINGULAR

A has a defective vanishing eigenvalue. The square root and condition number cannot be found in
this case.

7 Accuracy

If the computed square root is ~X, then the relative residual

A� ~X2
�� ��

F

Ak kF
;

is bounded approximately by n��, where � is machine precision. The relative error in ~X is bounded
approximately by n��A1=2�.

f01 – Matrix Factorizations f01jdc

Mark 25 f01jdc.3



8 Parallelism and Performance

nag_matop_real_gen_matrix_cond_sqrt (f01jdc) is threaded by NAG for parallel execution in
multithreaded implementations of the NAG Library.

nag_matop_real_gen_matrix_cond_sqrt (f01jdc) makes calls to BLAS and/or LAPACK routines, which
may be threaded within the vendor library used by this implementation. Consult the documentation for
the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

Approximately 3� n2 of real allocatable memory is required by the function.

The cost of computing the matrix square root is 85n3=3 floating-point operations. The cost of computing
the condition number depends on how fast the algorithm converges. It typically takes over twice as long
as computing the matrix square root.

If condition estimates are not required then it is more efficient to use nag_matop_real_gen_matrix_sqrt
(f01enc) to obtain the matrix square root alone. Condition estimates for the square root of a complex
matrix can be obtained via nag_matop_complex_gen_matrix_cond_sqrt (f01kdc).

10 Example

This example estimates the matrix square root and condition number of the matrix

A ¼
�5 2 �1 1
�2 �3 19 27
�9 0 15 24

7 8 11 16

0
B@

1
CA:

10.1 Program Text

/* nag_matop_real_gen_matrix_cond_sqrt (f01jdc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 24, 2013.
*/

#include <nag.h>
#include <nag_stdlib.h>
#include <nagf01.h>
#include <nagx04.h>

#define A(I,J) a[J*pda + I]

int main(void)
{

/* Scalars */
Integer exit_status = 0;
Integer i, j, n, pda;
double alpha, condsa;
/* Arrays */
double *a = 0;
/* Nag Types */
Nag_OrderType order = Nag_ColMajor;
NagError fail;

INIT_FAIL(fail);

/* Output preamble */
printf("nag_matop_real_gen_matrix_cond_sqrt (f01jdc) ");
printf("Example Program Results\n\n");

f01jdc NAG Library Manual

f01jdc.4 Mark 25



fflush(stdout);

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Read in the problem size */
#ifdef _WIN32

scanf_s("%"NAG_IFMT"%*[^\n]", &n);
#else

scanf("%"NAG_IFMT"%*[^\n]", &n);
#endif

pda = n;
if (!(a = NAG_ALLOC(pda*n, double))) {

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read in the matrix A from data file */
for (i = 0; i < n; i++)

#ifdef _WIN32
for (j = 0; j < n; j++) scanf_s("%lf", &A(i, j));

#else
for (j = 0; j < n; j++) scanf("%lf", &A(i, j));

#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Find matrix square root, condition number and residual bound using
* nag_matop_real_gen_matrix_cond_sqrt (f01jdc)
* Condition number for the square root of a real matrix
*/

nag_matop_real_gen_matrix_cond_sqrt (n, a, pda, &alpha, &condsa, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_matop_real_gen_matrix_cond_sqrt (f01jdc)\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Print matrix sqrt(A) using nag_gen_real_mat_print (x04cac)
* Print real general matrix (easy-to-use)
*/

nag_gen_real_mat_print (order, Nag_GeneralMatrix, Nag_NonUnitDiag,
n, n, a, pda, "sqrt(A)", NULL, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_real_mat_print (x04cac)\n%s\n", fail.message);
exit_status = 2;
goto END;

}

/* Print condition number estimates */
printf("Estimated relative condition number is: %7.2f\n", condsa);
printf("Condition number for the relative residual is: %7.2f\n",alpha);

END:
NAG_FREE(a);
return exit_status;

}

f01 – Matrix Factorizations f01jdc

Mark 25 f01jdc.5



10.2 Program Data

nag_matop_real_gen_matrix_cond_sqrt (f01jdc) Example Program Data

4 :Value of n

-5.0 2.0 -1.0 1.0
-2.0 -3.0 19.0 27.0
-9.0 0.0 15.0 24.0
7.0 8.0 11.0 16.0 :End of matrix a

10.3 Program Results

nag_matop_real_gen_matrix_cond_sqrt (f01jdc) Example Program Results

sqrt(A)
1 2 3 4

1 1.0000 2.0000 -1.0000 -1.0000
2 -3.0000 1.0000 2.0000 4.0000
3 -2.0000 3.0000 1.0000 2.0000
4 2.0000 -1.0000 3.0000 4.0000

Estimated relative condition number is: 77.10
Condition number for the relative residual is: 1.70

f01jdc NAG Library Manual

f01jdc.6 (last) Mark 25


	f01jdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Bjorck and Hammarling (1983)
	Deadman et al. (2013)
	Higham (1987)
	Higham (2008)

	5 Arguments
	n
	a
	pda
	alpha
	condsa
	fail

	6 Error Indicators and Warnings
	NE_ALG_FAIL
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_EIGENVALUES
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NEGATIVE_EIGVAL
	NE_NO_LICENCE
	NE_SINGULAR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction




