
NAG Library Function Document

nag_opt_check_deriv (e04hcc)

1 Purpose

nag_opt_check_deriv (e04hcc) checks that a user-defined C function for evaluating an objective function
and its first derivatives produces derivative values which are consistent with the function values
calculated.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_check_deriv (Integer n,

void (*objfun)(Integer n, const double x[], double *objf, double g[],
Nag_Comm *comm),

const double x[], double *objf, double g[], Nag_Comm *comm,
NagError *fail)

3 Description

The function nag_opt_bounds_deriv (e04kbc) for minimizing a function of several variables requires you
to supply a C function to evaluate the objective function F x1; x2; . . . ; xnð Þ and its first derivatives.
nag_opt_check_deriv (e04hcc) is designed to check the derivatives calculated by such a user-supplied

function. As well as the function to be checked (objfun), you must supply a point x ¼ x1; x2; . . . ; xnð ÞT
at which the check is to be made.

nag_opt_check_deriv (e04hcc) first calls the supplied function objfun to evaluate F and its first

derivatives gj ¼
@F

@xj
, for j ¼ 1; 2; . . . ; n at x. The components of the user-supplied derivatives along two

orthogonal directions (defined by unit vectors p1 and p2, say) are then calculated; these will be gTp1 and
gTp2 respectively. The same components are also estimated by finite differences, giving quantities

vk ¼
F xþ hpkð Þ � F xð Þ

h
; k ¼ 1; 2

where h is a small positive scalar. If the relative difference between v1 and gTp1 or between v2 and gTp2

is judged too large, an error indicator is set.

4 References

None.

5 Arguments

1: n – Integer Input

On entry: the number n of independent variables in the objective function.

Constraint: n � 1.

2: objfun – function, supplied by the user External Function

objfun must evaluate the objective function and its first derivatives at a given point. (The
minimization function nag_opt_bounds_deriv (e04kbc) gives you the option of resetting an
argument, comm!flag, to terminate the minimization process immediately. nag_opt_check_deriv

e04 – Minimizing or Maximizing a Function e04hcc

Mark 25 e04hcc.1

(e04hcc) will also terminate immediately, without finishing the checking process, if the argument
in question is reset to a negative value.)

The specification of objfun is:

void objfun (Integer n, const double x[], double *objf, double g[],
Nag_Comm *comm)

1: n – Integer Input

On entry: the number n of variables.

2: x½n� – const double Input

On entry: the point x at which F and its derivatives are required.

3: objf – double * Output

On exit: objfun must set objf to the value of the objective function F at the current point
x. If it is not possible to evaluate F then objfun should assign a negative value to
comm!flag; nag_opt_check_deriv (e04hcc) will then terminate.

4: g½n� – double Output

On exit: unless comm!flag is reset to a negative number, objfun must set g½j� 1� to

the value of the first derivative
@F

@xj
at the current point x for j ¼ 1; 2; . . . ; n

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

flag – Integer Input/Output

On entry: comm!flag will be set to 2.

On exit: if objfun resets comm!flag to some negative number then
nag_opt_check_deriv (e04hcc) will terminate immediately with the error indicator
NE_USER_STOP. If fail is supplied to nag_opt_check_deriv (e04hcc),
fail:errnum will be set to your setting of comm!flag.

first – Nag_Boolean Input

On entry: will be set to Nag_TRUE on the first call to objfun and Nag_FALSE for
all subsequent calls.

nf – Integer Input

On entry: the number of calculations of the objective function; this value will be
equal to the number of calls made to objfun including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void * and char

* otherwise. Before calling nag_opt_check_deriv (e04hcc) these pointers may be
allocated memory and initialized with various quantities for use by objfun when
called from nag_opt_check_deriv (e04hcc).

The array x must not be changed by objfun.

e04hcc NAG Library Manual

e04hcc.2 Mark 25

3: x½n� – const double Input

On entry: x½j � 1�, for j ¼ 1; 2; . . . ; n, must be set to the coordinates of a suitable point at which to
check the derivatives calculated by objfun. ‘Obvious’ settings, such as 0.0 or 1.0, should not be
used since, at such particular points, incorrect terms may take correct values (particularly zero), so
that errors could go undetected. Similarly, it is preferable that no two elements of x should be the
same.

4: objf – double * Output

On exit: unless you set comm!flag negative in the first call of objfun, objf contains the value of
the objective function F xð Þ at the point given in x.

5: g½n� – double Output

On exit: unless you set comm!flag negative in the first call of objfun, g½j � 1� contains the value

of the derivative
@F

@xj
at the point given in x, as calculated by objfun, for j ¼ 1; 2; . . . ; n.

6: comm – Nag_Comm * Input/Output

Note: comm is a NAG defined type (see Section 3.2.1.1 in the Essential Introduction).

On entry/exit: structure containing pointers for communication with the user-defined function; see
the above description of objfun for details. If you do not need to make use of this communication
feature the null pointer NAGCOMM_NULL may be used in the call to nag_opt_check_deriv (e04hcc);
comm will then be declared internally for use in calls to objfun.

7: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_DERIV_ERRORS

Large errors were found in the derivatives of the objective function.

You should check carefully the derivation and programming of expressions for the derivatives of
F xð Þ, because it is very unlikely that objfun is calculating them correctly.

NE_INT_ARG_LT

On entry, n ¼ valueh i.
Constraint: n � 1.

NE_USER_STOP

User requested termination, user flag value ¼ valueh i.
This exit occurs if you set comm!flag to a negative value in objfun. If fail is supplied the value
of fail:errnum will be the same as your setting of comm!flag. The check on objfun will not
have been completed.

e04 – Minimizing or Maximizing a Function e04hcc

Mark 25 e04hcc.3

7 Accuracy

fail is set to NE_DERIV_ERRORS if

vk � gTpk
� �2 � h� gTpk

� �2 þ 1
� �

for k ¼ 1 or 2. (See Section 3 for definitions of the quantities involved.) The scalar h is set equal to
ffiffi
�
p

,
where � is the machine precision as given by nag_machine_precision (X02AJC).

8 Parallelism and Performance

Not applicable.

9 Further Comments

The user-defined function objfun is called three times.

Before using nag_opt_check_deriv (e04hcc) to check the calculation of first derivatives, you should be
confident that objfun is calculating F correctly. The usual way of checking the calculation of the
function is to compare values of F xð Þ calculated by objfun at non-trivial points x with values calculated
independently. (‘Non-trivial’ means that, as when setting x before calling nag_opt_check_deriv (e04hcc),
coordinates such as 0.0 or 1.0 should be avoided.)

10 Example

Suppose that it is intended to use nag_opt_bounds_deriv (e04kbc) to minimize

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4:

The following program could be used to check the first derivatives calculated by the required function
objfun. (The test of whether comm!flag 6¼ 0 in objfun is present for when objfun is called by
nag_opt_bounds_deriv (e04kbc). nag_opt_check_deriv (e04hcc) will always call objfun with
comm!flag set to 2.)

10.1 Program Text

/* nag_opt_check_deriv (e04hcc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 2, 1991.
* Mark 7 revised, 2001.
* Mark 8 revised, 2004.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage04.h>

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL objfun(Integer n, const double x[], double *f, double g[],

Nag_Comm *comm);
#ifdef __cplusplus
}
#endif

#define NMAX 4

int main(void)
{

e04hcc NAG Library Manual

e04hcc.4 Mark 25

Integer exit_status = 0, i, n;
NagError fail;
double *g = 0, objf, *x = 0;
Nag_Comm comm;

INIT_FAIL(fail);

printf("nag_opt_check_deriv (e04hcc) Example Program Results\n");

n = NMAX;
if (n >= 1)

{
if (!(x = NAG_ALLOC(n, double)) ||

!(g = NAG_ALLOC(n, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
{

printf("Invalid n.\n");
exit_status = 1;
return exit_status;

}
x[0] = 1.46;
x[1] = -0.82;
x[2] = 0.57;
x[3] = 1.21;

printf("\nThe test point is:\n");
for (i = 0; i < n; ++i)

printf(" %8.4f", x[i]);
printf("\n");

/* Call derivative checker */
/* nag_opt_check_deriv (e04hcc).
* Derivative checker for use with nag_opt_bounds_deriv
* (e04kbc)
*/

nag_opt_check_deriv(n, objfun, x, &objf, g, &comm, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_opt_check_deriv (e04hcc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

printf("\nFirst derivatives are consistent with function values.\n\n");
printf("At the test point, objfun gives the function value %13.4e\n",

objf);
printf("and the 1st derivatives\n\n");
for (i = 0; i < n; ++i)

printf(" %12.3e ", g[i]);
printf("\n");

END:
NAG_FREE(x);
NAG_FREE(g);
return exit_status;

}

static void NAG_CALL objfun(Integer n, const double x[], double *objf,
double g[], Nag_Comm *comm)

{
/* objfun evaluates the objective function and its derivatives. */

double x1, x2, x3, x4;
double tmp, tmp1, tmp2, tmp3, tmp4;

e04 – Minimizing or Maximizing a Function e04hcc

Mark 25 e04hcc.5

x1 = x[0];
x2 = x[1];
x3 = x[2];
x4 = x[3];

/* Supply a single function value */
tmp1 = x1 + 10.0*x2;
tmp2 = x3 - x4;
tmp3 = x2 - 2.0*x3, tmp3 *= tmp3;
tmp4 = x1 - x4, tmp4 *= tmp4;
*objf = tmp1*tmp1 + 5.0*tmp2*tmp2 + tmp3*tmp3 + 10.0*tmp4*tmp4;

if (comm->flag != 0)
{

/* Calculate the derivatives */
tmp = x1 - x4;
g[0] = 2.0*(x1 + 10.0*x2) + 40.0*tmp*tmp*tmp;
tmp = x2 - 2.0*x3;
g[1] = 20.0*(x1 + 10.0*x2) + 4.0*tmp*tmp*tmp;
tmp = x2 - 2.0*x3;
g[2] = 10.0*(x3 - x4) - 8.0*tmp*tmp*tmp;
tmp = x1 - x4;
g[3] = 10.0*(x4 - x3) - 40.0*tmp*tmp*tmp;

}
} /* objfun */

10.2 Program Data

None.

10.3 Program Results

nag_opt_check_deriv (e04hcc) Example Program Results

The test point is:
1.4600 -0.8200 0.5700 1.2100

First derivatives are consistent with function values.

At the test point, objfun gives the function value 6.2273e+01
and the 1st derivatives

-1.285e+01 -1.649e+02 5.384e+01 5.775e+00

e04hcc NAG Library Manual

e04hcc.6 (last) Mark 25

	e04hcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	n
	objfun
	n
	x
	objf
	g
	comm
	flag
	first
	nf
	user
	iuser
	p

	x
	objf
	g
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_DERIV_ERRORS
	NE_INT_ARG_LT
	NE_USER_STOP

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

