
NAG Library Function Document

nag_lone_fit (e02gac)

1 Purpose

nag_lone_fit (e02gac) calculates an l1 solution to an over-determined system of linear equations.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_lone_fit (Nag_OrderType order, Integer m, double a[], double b[],
Integer nplus2, double toler, double x[], double *resid, Integer *rank,
Integer *iter, NagError *fail)

3 Description

Given a matrix A with m rows and n columns m � nð Þ and a vector b with m elements, the function
calculates an l1 solution to the over-determined system of equations

Ax ¼ b:

That is to say, it calculates a vector x, with n elements, which minimizes the l1 norm (the sum of the
absolute values) of the residuals

r xð Þ ¼
Xm

i¼1

rij j;

where the residuals ri are given by

ri ¼ bi �
Xn

j¼1

aijxj; i ¼ 1; 2; . . . ;m:

Here aij is the element in row i and column j of A, bi is the ith element of b and xj the jth element of x.
The matrix A need not be of full rank.

Typically in applications to data fitting, data consisting of m points with coordinates ti; yið Þ are to be
approximated in the l1 norm by a linear combination of known functions �j tð Þ,

�1�1 tð Þ þ �2�2 tð Þ þ � � � þ �n�n tð Þ:

This is equivalent to fitting an l1 solution to the over-determined system of equations

Xn

j¼1

�j tið Þ�j ¼ yi; i ¼ 1; 2; . . . ;m:

Thus if, for each value of i and j, the element aij of the matrix A in the previous paragraph is set equal
to the value of �j tið Þ and bi is set equal to yi, the solution vector x will contain the required values of
the �j. Note that the independent variable t above can, instead, be a vector of several independent
variables (this includes the case where each �i is a function of a different variable, or set of variables).

The algorithm is a modification of the simplex method of linear programming applied to the primal
formulation of the l1 problem (see Barrodale and Roberts (1973) and Barrodale and Roberts (1974)). The
modification allows several neighbouring simplex vertices to be passed through in a single iteration,
providing a substantial improvement in efficiency.

e02 – Curve and Surface Fitting e02gac

Mark 25 e02gac.1

4 References

Barrodale I and Roberts F D K (1973) An improved algorithm for discrete l1 linear approximation SIAM
J. Numer. Anal. 10 839–848

Barrodale I and Roberts F D K (1974) Solution of an overdetermined system of equations in the l1-norm
Comm. ACM 17(6) 319–320

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: m – Integer Input

On entry: the number of equations, m (the number of rows of the matrix A).

Constraint: m � n � 1.

3: a½ mþ 2ð Þ � nplus2� – double Input/Output

Note: where A i; jð Þ appears in this document, it refers to the array element

a½ j� 1ð Þ � mþ 2ð Þð Þ þ i� 1� when order ¼ Nag ColMajor;
a½ i� 1ð Þ � nplus2þ j� 1� when order ¼ Nag RowMajor.

On entry: A i; jð Þ must contain aij , the element in the ith row and jth column of the matrix A, for
i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n. The remaining elements need not be set.

On exit: contains the last simplex tableau generated by the simplex method.

4: b½m� – double Input/Output

On entry: b½i � 1� must contain bi, the ith element of the vector b, for i ¼ 1; 2; . . . ;m.

On exit: the ith residual ri corresponding to the solution vector x, for i ¼ 1; 2; . . . ;m.

5: nplus2 – Integer Input

On entry: nþ 2, where n is the number of unknowns (the number of columns of the matrix A).

Constraint: 3 � nplus2 � mþ 2.

6: toler – double Input

On entry: a non-negative value. In general toler specifies a threshold below which numbers are
regarded as zero. The recommended threshold value is �2=3 where � is the machine precision. The
recommended value can be computed within the function by setting toler to zero. If premature
termination occurs a larger value for toler may result in a valid solution.

Suggested value: 0:0.

7: x½nplus2� – double Output

On exit: x½j � 1� contains the jth element of the solution vector x, for j ¼ 1; 2; . . . ; n. The elements
x½n� and x½nþ 1� are unused.

8: resid – double * Output

On exit: the sum of the absolute values of the residuals for the solution vector x.

e02gac NAG Library Manual

e02gac.2 Mark 25

9: rank – Integer * Output

On exit: the computed rank of the matrix A.

10: iter – Integer * Output

On exit: the number of iterations taken by the simplex method.

11: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, nplus2 ¼ valueh i.
Constraint: nplus2 � 3.

NE_INT_2

On entry, nplus2 ¼ valueh i and m ¼ valueh i.
Constraint: 3 � nplus2 � mþ 2.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_NON_UNIQUE

An optimal solution has been obtained, but may not be unique.

NE_TERMINATION_FAILURE

Premature termination due to rounding errors. Try using larger value of toler: toler ¼ valueh i.

7 Accuracy

Experience suggests that the computational accuracy of the solution x is comparable with the accuracy
that could be obtained by applying Gaussian elimination with partial pivoting to the n equations satisfied
by this algorithm (i.e., those equations with zero residuals). The accuracy therefore varies with the
conditioning of the problem, but has been found generally very satisfactory in practice.

e02 – Curve and Surface Fitting e02gac

Mark 25 e02gac.3

8 Parallelism and Performance

Not applicable.

9 Further Comments

The effects of m and n on the time and on the number of iterations in the Simplex Method vary from
problem to problem, but typically the number of iterations is a small multiple of n and the total time
taken is approximately proportional to mn2.

It is recommended that, before the function is entered, the columns of the matrix A are scaled so that the
largest element in each column is of the order of unity. This should improve the conditioning of the
matrix, and also enable the argument toler to perform its correct function. The solution x obtained will
then, of course, relate to the scaled form of the matrix. Thus if the scaling is such that, for each
j ¼ 1; 2; . . . ; n, the elements of the jth column are multiplied by the constant kj, the element xj of the
solution vector x must be multiplied by kj if it is desired to recover the solution corresponding to the
original matrix A.

10 Example

Suppose we wish to approximate a set of data by a curve of the form

y ¼ Ket þ Le�t þM

where K, L and M are unknown. Given values yi at 5 points ti we may form the over-determined set of
equations for K, L and M

exiK þ e�xiLþM ¼ yi; i ¼ 1; 2; . . . ; 5:

nag_lone_fit (e02gac) is used to solve these in the l1 sense.

10.1 Program Text

/* nag_lone_fit (e02gac) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{

/* Scalars */
double resid, t, tol;
Integer exit_status, i, iter, m, rank, n, nplus2, pda;
NagError fail;
Nag_OrderType order;

/* Arrays */
double *a = 0, *b = 0, *x = 0;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]

order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

e02gac NAG Library Manual

e02gac.4 Mark 25

exit_status = 0;
printf("nag_lone_fit (e02gac) Example Program Results\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

n = 3;
nplus2 = n + 2;

#ifdef _WIN32
scanf_s("%"NAG_IFMT"%*[^\n] ", &m);

#else
scanf("%"NAG_IFMT"%*[^\n] ", &m);

#endif
if (m > 0)

{
/* Allocate memory */
if (!(a = NAG_ALLOC((m + 2) * nplus2, double)) ||

!(b = NAG_ALLOC(m, double)) ||
!(x = NAG_ALLOC(nplus2, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

if (order == Nag_ColMajor)
pda = m + 2;

else
pda = nplus2;

for (i = 1; i <= m; ++i)
{

#ifdef _WIN32
scanf_s("%lf%lf%*[^\n] ", &t, &b[i-1]);

#else
scanf("%lf%lf%*[^\n] ", &t, &b[i-1]);

#endif
A(i, 1) = exp(t);
A(i, 2) = exp(-t);
A(i, 3) = 1.0;

}
tol = 0.0;
/* nag_lone_fit (e02gac).
* L_1-approximation by general linear function
*/

nag_lone_fit(order, m, a, b, nplus2, tol, x, &resid,
&rank, &iter, &fail);

if (fail.code == NE_INT || fail.code == NE_INT_2 ||
fail.code == NE_NO_LICENCE)

{
printf("Error from nag_lone_fit (e02gac).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
else

{
printf("\n");
printf("resid = %11.2e Rank = %5"NAG_IFMT" Iterations ="

" %5"NAG_IFMT"\n", resid, rank, iter);

printf("\n");
printf("Solution\n");

for (i = 1; i <= n; ++i)

e02 – Curve and Surface Fitting e02gac

Mark 25 e02gac.5

printf("%10.4f", x[i-1]);
printf("\n");

}
}

END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(x);

return exit_status;
}

10.2 Program Data

nag_lone_fit (e02gac) Example Program Data
5
0.0 4.501
0.2 4.360
0.4 4.333
0.6 4.418
0.8 4.625

10.3 Program Results

nag_lone_fit (e02gac) Example Program Results

resid = 2.78e-03 Rank = 3 Iterations = 5

Solution
1.0014 2.0035 1.4960

e02gac NAG Library Manual

e02gac.6 (last) Mark 25

	e02gac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Barrodale and Roberts (1973)
	Barrodale and Roberts (1974)

	5 Arguments
	order
	m
	a
	b
	nplus2
	toler
	x
	resid
	rank
	iter
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_NON_UNIQUE
	NE_TERMINATION_FAILURE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

