
NAG Library Function Document

nag_2d_cheb_fit_lines (e02cac)

1 Purpose

nag_2d_cheb_fit_lines (e02cac) forms an approximation to the weighted, least squares Chebyshev series
surface fit to data arbitrarily distributed on lines parallel to one independent coordinate axis.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_2d_cheb_fit_lines (const Integer m[], Integer n, Integer k,
Integer l, const double x[], const double y[], const double f[],
const double w[], double a[], const double xmin[], const double xmax[],
const double nux[], Integer inuxp1, const double nuy[], Integer inuyp1,
NagError *fail)

3 Description

nag_2d_cheb_fit_lines (e02cac) determines a bivariate polynomial approximation of degree k in x and l
in y to the set of data points xr ;s; ys; fr ;s

� �
, with weights wr;s, for s ¼ 1; 2; . . . ; n and r ¼ 1; 2; . . . ;ms.

That is, the data points are on lines y ¼ ys, but the x values may be different on each line. The values of
k and l are prescribed by you (for guidance on their choice, see Section 9). The function is based on the
method described in Sections 5 and 6 of Clenshaw and Hayes (1965).

The polynomial is represented in double Chebyshev series form with arguments �x and �y. The arguments
lie in the range �1 to þ1 and are related to the original variables x and y by the transformations

�x ¼ 2x� xmax þ xminð Þ
xmax � xminð Þ and �y ¼ 2y� ymax þ yminð Þ

ymax � yminð Þ :

Here ymax and ymin are set by the function to, respectively, the largest and smallest value of ys, but xmax

and xmin are functions of y prescribed by you (see Section 9). For this function, only their values x
sð Þ

max

and x
sð Þ

min at each y ¼ ys are required. For each s ¼ 1; 2; . . . ; n, x
sð Þ

max must not be less than the largest xr;s

on the line y ¼ ys, and, similarly, x
sð Þ

min must not be greater than the smallest xr;s.

The double Chebyshev series can be written as

Xk
i¼0

Xl
j¼0

aijTi �xð ÞTj �yð Þ

where Ti �xð Þ is the Chebyshev polynomial of the first kind of degree i with argument �x, and Tj yð Þ is
similarly defined. However, the standard convention, followed in this function, is that coefficients in the
above expression which have either i or j zero are written as 1

2aij , instead of simply aij, and the

coefficient with both i and j equal to zero is written as 1
4a0;0 . The series with coefficients output by the

function should be summed using this convention. nag_2d_cheb_eval (e02cbc) is available to compute
values of the fitted function from these coefficients.

The function first obtains Chebyshev series coefficients cs;i, for i ¼ 0; 1; . . . ; k, of the weighted least
squares polynomial curve fit of degree k in �x to the data on each line y ¼ ys, for s ¼ 1; 2; . . . ; n, in turn,
using an auxiliary function. The same function is then called kþ 1 times to fit cs;i, for s ¼ 1; 2; . . . ; n, by
a polynomial of degree l in �y, for each i ¼ 0; 1; . . . ; k. The resulting coefficients are the required aij.

You can force the fit to contain a given polynomial factor. This allows for the surface fit to be
constrained to have specified values and derivatives along the boundaries x ¼ xmin , x ¼ xmax , y ¼ ymin

e02 – Curve and Surface Fitting e02cac

Mark 25 e02cac.1

and y ¼ ymax or indeed along any lines �x ¼ constant or �y ¼ constant (see Section 8 of Clenshaw and
Hayes (1965)).

4 References

Clenshaw C W and Hayes J G (1965) Curve and surface fitting J. Inst. Math. Appl. 1 164–183

Hayes J G (ed.) (1970) Numerical Approximation to Functions and Data Athlone Press, London

5 Arguments

1: m½n� – const Integer Input

On entry: m½s � 1� must be set to ms, the number of data x values on the line y ¼ ys, for
s ¼ 1; 2; . . . ; n.

Constraint: m½s � 1� > 0, for s ¼ 1; 2; . . . ; n.

2: n – Integer Input

On entry: the number of lines y ¼ constant on which data points are given.

Constraint: n > 0.

3: k – Integer Input

On entry: k, the required degree of x in the fit.

Constraint: for s ¼ 1; 2; . . . ; n, inuxp1� 1 � k < mdist sð Þ þ inuxp1� 1, where mdist sð Þ is the
number of distinct x values with nonzero weight on the line y ¼ ys. See Section 9.

4: l – Integer Input

On entry: l, the required degree of y in the fit.

Constraints:

l � 0;
inuyp1� 1 � l < nþ inuyp1� 1.

5: x½dim� – const double Input

Note: the dimension, dim, of the array x must be at least
Xn

s¼1

m½s � 1�
 !

.

On entry: the x values of the data points. The sequence must be

all points on y ¼ y1, followed by

all points on y ¼ y2, followed by

..

.

all points on y ¼ yn.

Constraint: for each ys, the x values must be in nondecreasing order.

6: y½n� – const double Input

On entry: y½s � 1� must contain the y value of line y ¼ ys, for s ¼ 1; 2; . . . ; n, on which data is
given.

Constraint: the ys values must be in strictly increasing order.

e02cac NAG Library Manual

e02cac.2 Mark 25

7: f ½dim� – const double Input

Note: the dimension, dim, of the array f must be at least
Xn

s¼1

m½s � 1�
 !

.

On entry: f , the data values of the dependent variable in the same sequence as the x values.

8: w½dim� – const double Input

Note: the dimension, dim, of the array w must be at least
Xn

s¼1

m½s � 1�
 !

.

On entry: the weights to be assigned to the data points, in the same sequence as the x values.
These weights should be calculated from estimates of the absolute accuracies of the fr, expressed
as standard deviations, probable errors or some other measure which is of the same dimensions as
fr. Specifically, each wr should be inversely proportional to the accuracy estimate of fr. Often
weights all equal to unity will be satisfactory. If a particular weight is zero, the corresponding data
point is omitted from the fit.

9: a½dim� – double Output

Note: the dimension, dim, of the array a must be at least k þ 1ð Þ � lþ 1ð Þð Þ.
On exit: contains the Chebyshev coefficients of the fit. a½i� lþ 1ð Þ þ j� 1� is the coefficient aij
of Section 3 defined according to the standard convention. These coefficients are used by
nag_2d_cheb_eval (e02cbc) to calculate values of the fitted function.

10: xmin½n� – const double Input

On entry: xmin½s � 1� must contain x
sð Þ

min , the lower end of the range of x on the line y ¼ ys, for

s ¼ 1; 2; . . . ; n. It must not be greater than the lowest data value of x on the line. Each x
sð Þ

min is
scaled to �1:0 in the fit. (See also Section 9.)

11: xmax½n� – const double Input

On entry: xmax½s � 1� must contain x
sð Þ

max , the upper end of the range of x on the line y ¼ ys, for

s ¼ 1; 2; . . . ; n. It must not be less than the highest data value of x on the line. Each x
sð Þ

max is
scaled to þ1:0 in the fit. (See also Section 9.)

Constraint: xmax½s� 1� > xmin½s� 1�.

12: nux½inuxp1� – const double Input

On entry: nux½i � 1� must contain the coefficient of the Chebyshev polynomial of degree i � 1ð Þ
in �x, in the Chebyshev series representation of the polynomial factor in �x which you require the fit
to contain, for i ¼ 1; 2; . . . ; inuxp1. These coefficients are defined according to the standard
convention of Section 3.

Constraint: nux½inuxp1� 1� must be nonzero, unless inuxp1 ¼ 1, in which case nux is ignored.

13: inuxp1 – Integer Input

On entry: INUX þ 1, where INUX is the degree of a polynomial factor in �x which you require
the fit to contain. (See Section 3, last paragraph.)

If this option is not required, inuxp1 should be set equal to 1.

Constraint: 1 � inuxp1 � k þ 1.

14: nuy½inuyp1� – const double Input

On entry: nuy½i � 1� must contain the coefficient of the Chebyshev polynomial of degree i � 1ð Þ
in �y, in the Chebyshev series representation of the polynomial factor which you require the fit to

e02 – Curve and Surface Fitting e02cac

Mark 25 e02cac.3

contain, for i ¼ 1; 2; . . . ; inuyp1. These coefficients are defined according to the standard
convention of Section 3.

Constraint: nuy½inuyp1� 1� must be nonzero, unless inuyp1 ¼ 1, in which case nuy is ignored.

15: inuyp1 – Integer Input

On entry: INUY þ 1, where INUY is the degree of a polynomial factor in �y which you require
the fit to contain. (See Section 3, last paragraph.) If this option is not required, inuyp1 should be
set equal to 1.

16: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, inuxp1 ¼ valueh i.
Constraint: inuxp1 � 1.

On entry, inuyp1 ¼ valueh i.
Constraint: inuyp1 � 1.

On entry, k ¼ valueh i.
Constraint: k � 0.

On entry, l ¼ valueh i.
Constraint: l � 0.

On entry, n ¼ valueh i.
Constraint: n > 0.

NE_INT_2

On entry, inuxp1 ¼ valueh i and k ¼ valueh i.
Constraint: inuxp1 � k þ 1.

On entry, inuyp1 ¼ valueh i and l ¼ valueh i.
Constraint: inuyp1 � lþ 1.

NE_INT_3

On entry, n ¼ valueh i, l ¼ valueh i and inuyp1 ¼ valueh i.
Constraint: inuyp1� 1 � l < nþ inuyp1� 1.

On entry, n ¼ valueh i, l ¼ valueh i and inuyp1 ¼ valueh i.
Constraint: l � 0 and

On entry, n ¼ valueh i, l ¼ valueh i and inuyp1 ¼ valueh i.
Constraint: n � l� inuyp1þ 2.

NE_INT_ARRAY

On entry, I ¼ valueh i, m½I � 1� ¼ valueh i, k ¼ valueh i and inuxp1 ¼ valueh i.
Constraint: m½I � 1� � k � inuxp1þ 2.

e02cac NAG Library Manual

e02cac.4 Mark 25

On entry, inuxp1 ¼ valueh i, nux½inuxp1� 1� ¼ valueh i, inuyp1 ¼ valueh i and
nuy½inuyp1� 1� ¼ valueh i.
Constraint: if nux½inuxp1� 1� ¼ 0:0, inuxp1 ¼ 1; if nuy½inuyp1� 1� ¼ 0:0, inuyp1 ¼ 1.

On entry, m½ valueh i� ¼ valueh i.
Constraint: m½s � 1� > 0, for s ¼ 1; 2; . . . ; n.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_NON_ZERO_WEIGHTS

On entry, the number of distinct x values with nonzero weight on y ¼ y½I � 1� is less than
k � inuxp1þ 2: I ¼ valueh i, y½I � 1� ¼ valueh i, k ¼ valueh i and inuxp1 ¼ valueh i.

NE_NOT_NON_DECREASING

On entry, the data x values are not nondecreasing for y ¼ y½I � 1�: I ¼ valueh i and
y½I � 1� ¼ valueh i.

NE_NOT_STRICTLY_INCREASING

On entry, I ¼ valueh i, y½I � 1� ¼ valueh i and y½I � 2� ¼ valueh i.
Constraint: y½I � 1� > y½I � 2�.

NE_REAL_ARRAY

On entry, xmin½I � 1� and xmax½I � 1� do not span the data x values on y ¼ y½I � 1�:
I ¼ valueh i, xmin½I � 1� ¼ valueh i, xmax½I � 1� ¼ valueh i and y½I � 1� ¼ valueh i.

7 Accuracy

No error analysis for this method has been published. Practical experience with the method, however, is
generally extremely satisfactory.

8 Parallelism and Performance

nag_2d_cheb_fit_lines (e02cac) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to k� k�
Xn

s¼1

m½s � 1�
 !

þ n� l2
 !

.

The reason for allowing xmax and xmin (which are used to normalize the range of x) to vary with y is
that unsatisfactory fits can result if the highest (or lowest) data values of the normalized x on each line
y ¼ ys are not approximately the same. (For an explanation of this phenomenon, see page 176 of

e02 – Curve and Surface Fitting e02cac

Mark 25 e02cac.5

Clenshaw and Hayes (1965).) Commonly in practice, the lowest (for example) data values x1;s, while not
being approximately constant, do lie close to some smooth curve in the x; yð Þ plane. Using values from
this curve as the values of xmin , different in general on each line, causes the lowest transformed data
values �x1;s to be approximately constant. Sometimes, appropriate curves for xmax and xmin will be clear
from the context of the problem (they need not be polynomials). If this is not the case, suitable curves
can often be obtained by fitting to the lowest data values x1;s and to the corresponding highest data
values of x, low degree polynomials in y, using function nag_1d_cheb_fit (e02adc), and then shifting the
two curves outwards by a small amount so that they just contain all the data between them. The
complete curves are not in fact supplied to the present function, only their values at each ys; and the
values simply need to lie on smooth curves. More values on the complete curves will be required
subsequently, when computing values of the fitted surface at arbitrary y values.

Naturally, a satisfactory approximation to the surface underlying the data cannot be expected if the
character of the surface is not adequately represented by the data. Also, as always with polynomials, the
approximating function may exhibit unwanted oscillations (particularly near the ends of the ranges) if the
degrees k and l are taken greater than certain values, generally unknown but depending on the total
number of coefficients kþ 1ð Þ � lþ 1ð Þ should be significantly smaller than, say not more than half, the
total number of data points. Similarly, kþ 1 should be significantly smaller than most (preferably all) the
ms, and lþ 1 significantly smaller than n. Closer spacing of the data near the ends of the x and y ranges
is an advantage. In par t icular, i f �ys ¼ � cos � s � 1ð Þ= n� 1ð Þð Þ, for s ¼ 1; 2; . . . ; n and
�xr;s ¼ � cos � r � 1ð Þ= m� 1ð Þð Þ, for r ¼ 1; 2; . . . ;m, (thus ms ¼ m for all s), then the values
k ¼ m� 1 and l ¼ n� 1 (so that the polynomial passes exactly through all the data points) should
not give unwanted oscillations. Other datasets should be similarly satisfactory if they are everywhere at
least as closely spaced as the above cosine values with m replaced by kþ 1 and n by lþ 1 (more
precisely, if for every s the largest interval between consecutive values of arccos �xr;s, for r ¼ 1; 2; . . . ;m,
is not greater than �=k, and similarly for the �ys). The polynomial obtained should always be examined
graphically before acceptance. Note that, for this purpose it is not sufficient to plot the polynomial only
at the data values of x and y: intermediate values should also be plotted, preferably via a graphics
facility.

Provided the data are adequate, and the surface underlying the data is of a form that can be represented
by a polynomial of the chosen degrees, the function should produce a good approximation to this
surface. It is not, however, the true least squares surface fit nor even a polynomial in x and y, the
original variables (see Section 6 of Clenshaw and Hayes (1965),), except in certain special cases. The
most important of these is where the data values of x are the same on each line y ¼ ys, (i.e., the data
points lie on a rectangular mesh in the x; yð Þ plane), the weights of the data points are all equal, and
xmax and xmin are both constants (in this case they should be set to the largest and smallest data values
of x, respectively).

If the dataset is such that it can be satisfactorily approximated by a polynomial of degrees k0 and l0, say,
then if higher values are used for k and l in the function, all the coefficients aij for i > k0 or j > l0 will
take apparently random values within a range bounded by the size of the data errors, or rather less. (This
behaviour of the Chebyshev coefficients, most readily observed if they are set out in a rectangular array,
closely parallels that in curve-fitting, examples of which are given in Section 8 of Hayes (1970).) In
practice, therefore, to establish suitable values of k0 and l0, you should first be seeking (within the
limitations discussed above) values for k and l which are large enough to exhibit the behaviour
described. Values for k0 and l0 should then be chosen as the smallest which do not exclude any
coefficients significantly larger than the random ones. A polynomial of degrees k0 and l0 should then be
fitted to the data.

If the option to force the fit to contain a given polynomial factor in x is used and if zeros of the chosen
factor coincide with data x values on any line, then the effective number of data points on that line is
reduced by the number of such coincidences. A similar consideration applies when forcing the
y-direction. No account is taken of this by the function when testing that the degrees k and l have not
been chosen too large.

e02cac NAG Library Manual

e02cac.6 Mark 25

10 Example

This example reads data in the following order, using the notation of the argument list for
nag_2d_cheb_fit_lines (e02cac) above:

n k l
y½i� 1� m½i� 1� xmin½i� 1� xmax½i� 1�; for i ¼ 1; 2; . . . ; n

x½i� 1� f ½i� 1� w½i� 1�; for i ¼ 1; 2; . . . ;
Xn

s¼1

m½s � 1�
 !

:

The data points are fitted using nag_2d_cheb_fit_lines (e02cac), and then the fitting polynomial is
evaluated at the data points using nag_2d_cheb_eval (e02cbc).

The output is:

the data points and their fitted values;

the Chebyshev coefficients of the fit.

10.1 Program Text

/* nag_2d_cheb_fit_lines (e02cac) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{

/* Scalars */
double ymax;
Integer exit_status, i, j, k, l, mi, mj, n, r, t,

na, one;
NagError fail;

/* Arrays */
double *a = 0, *f = 0, *ff = 0, *w = 0,
*x = 0, *xmax = 0, *xmin = 0, *y = 0;
Integer *m = 0;

INIT_FAIL(fail);

exit_status = 0;
printf("nag_2d_cheb_fit_lines (e02cac) Example Program Results\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Input the number of lines Y = Y(I) on which data is given, */
/* and the required degree of fit in the X and Y directions */

#ifdef _WIN32
while (scanf_s("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n] ", &n, &k, &l) != EOF)

#else
while (scanf("%"NAG_IFMT"%"NAG_IFMT"%"NAG_IFMT"%*[^\n] ", &n, &k, &l) != EOF)

#endif
{

printf("\n");
if (n > 0)

{

e02 – Curve and Surface Fitting e02cac

Mark 25 e02cac.7

/* Allocate arrays m, y, xmin and xmax */
if (!(m = NAG_ALLOC(n, Integer)) ||

!(y = NAG_ALLOC(n, double)) ||
!(xmin = NAG_ALLOC(n, double)) ||
!(xmax = NAG_ALLOC(n, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

mj = 0;
/* Input Y(I), the number of data points on Y = Y(I) and the */
/* range of X-values on this line, for I = 1,2,...N */
for (i = 0; i < n; ++i)

{
#ifdef _WIN32

scanf_s("%lf%"NAG_IFMT"%lf%lf%*[^\n] ", &y[i], &mi, &xmin[i],
&xmax[i]);

#else
scanf("%lf%"NAG_IFMT"%lf%lf%*[^\n] ", &y[i], &mi, &xmin[i],

&xmax[i]);
#endif

m[i] = mi;
mj += mi;

}

/* Allocate arrays x, f, ff, w and a */
na = (k + 1) * (l + 1);
if (!(x = NAG_ALLOC(mj, double)) ||

!(f = NAG_ALLOC(mj, double)) ||
!(ff = NAG_ALLOC(mj, double)) ||
!(w = NAG_ALLOC(mj, double)) ||
!(a = NAG_ALLOC(na, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Input the X-values and function values, F, together with */
/* their weights, W. */
for (i = 0; i < mj; ++i)

#ifdef _WIN32
scanf_s("%lf%lf%lf", &x[i], &f[i], &w[i]);

#else
scanf("%lf%lf%lf", &x[i], &f[i], &w[i]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Evaluate the coefficients, A, of the fit to this set of data */
one = 1;
/* nag_2d_cheb_fit_lines (e02cac).
* Least-squares surface fit by polynomials, data on lines
*/

nag_2d_cheb_fit_lines(m, n, k, l, x, y, f, w, a, xmin, xmax, y, one,
y, one, &fail);

if (fail.code != NE_NOERROR)
{

printf(
"Error from nag_2d_cheb_fit_lines (e02cac).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf(

e02cac NAG Library Manual

e02cac.8 Mark 25

" Data Y Data X Data F Fitted F Residual\n");
printf("\n");

mi = 0;
for (r = 1; r <= n; ++r)

{
t = mi + 1;
mi += m[r-1];
ymax = y[n-1];
if (n == 1)

ymax += 1.0;

/* Evaluate the fitted polynomial at each of the data points */
/* on the line Y = Y(R) */
/* nag_2d_cheb_eval (e02cbc).
* Evaluation of fitted polynomial in two variables
*/

nag_2d_cheb_eval(t, mi, k, l, x, xmin[r-1], xmax[r-1],
y[r-1], y[0], ymax, ff, a, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_2d_cheb_eval (e02cbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
/* Output the data and fitted values on the line Y = Y(R) */
for (i = t-1; i < mi; ++i)

{
printf("%11.4f%11.4f%11.4f%11.4f",

y[r-1], x[i], f[i], ff[i]);
printf("%11.2e\n", ff[i] - f[i]);

}
printf("\n");

}

/* Output the Chebyshev coefficients of the fit */
printf("Chebyshev coefficients of the fit\n");
printf("\n");

for (j = 1; j <= k + 1; ++j)
{

for (i = (j - 1) * (l + 1); i < j * (l + 1); ++i)
printf("%11.4f ", a[i]);

printf("\n");
}

}
}

END:
NAG_FREE(a);
NAG_FREE(f);
NAG_FREE(ff);
NAG_FREE(w);
NAG_FREE(x);
NAG_FREE(xmax);
NAG_FREE(xmin);
NAG_FREE(y);
NAG_FREE(m);

return exit_status;
}

e02 – Curve and Surface Fitting e02cac

Mark 25 e02cac.9

10.2 Program Data

nag_2d_cheb_fit_lines (e02cac) Example Program Data
4 3 2

0.0 8 0.0 5.0
1.0 7 0.1 4.5
2.0 7 0.4 4.0
4.0 6 1.6 3.5
0.1 1.01005 1.0
1.0 1.10517 1.0
1.6 1.17351 1.0
2.1 1.23368 1.0
3.3 1.39097 1.0
3.9 1.47698 1.0
4.2 1.52196 1.0
4.9 1.63232 1.0
0.1 2.02010 1.0
1.1 2.23256 1.0
1.9 2.41850 1.0
2.7 2.61993 1.0
3.2 2.75426 1.0
4.1 3.01364 1.0
4.5 3.13662 1.0
0.5 3.15381 1.0
1.1 3.34883 1.0
1.3 3.41649 1.0
2.2 3.73823 1.0
2.9 4.00928 1.0
3.5 4.25720 1.0
3.9 4.43094 1.0
1.7 5.92652 1.0
2.0 6.10701 1.0
2.4 6.35625 1.0
2.7 6.54982 1.0
3.1 6.81713 1.0
3.5 7.09534 1.0

10.3 Program Results

nag_2d_cheb_fit_lines (e02cac) Example Program Results

Data Y Data X Data F Fitted F Residual

0.0000 0.1000 1.0100 1.0175 7.40e-03
0.0000 1.0000 1.1052 1.1126 7.39e-03
0.0000 1.6000 1.1735 1.1809 7.43e-03
0.0000 2.1000 1.2337 1.2412 7.55e-03
0.0000 3.3000 1.3910 1.3992 8.19e-03
0.0000 3.9000 1.4770 1.4857 8.72e-03
0.0000 4.2000 1.5220 1.5310 9.03e-03
0.0000 4.9000 1.6323 1.6422 9.83e-03

1.0000 0.1000 2.0201 1.9987 -2.14e-02
1.0000 1.1000 2.2326 2.2110 -2.16e-02
1.0000 1.9000 2.4185 2.3962 -2.23e-02
1.0000 2.7000 2.6199 2.5966 -2.34e-02
1.0000 3.2000 2.7543 2.7299 -2.43e-02
1.0000 4.1000 3.0136 2.9869 -2.68e-02
1.0000 4.5000 3.1366 3.1084 -2.82e-02

2.0000 0.5000 3.1538 3.1700 1.62e-02
2.0000 1.1000 3.3488 3.3648 1.60e-02
2.0000 1.3000 3.4165 3.4325 1.60e-02
2.0000 2.2000 3.7382 3.7549 1.66e-02
2.0000 2.9000 4.0093 4.0272 1.79e-02
2.0000 3.5000 4.2572 4.2769 1.97e-02
2.0000 3.9000 4.4309 4.4521 2.12e-02

4.0000 1.7000 5.9265 5.9231 -3.42e-03
4.0000 2.0000 6.1070 6.1036 -3.41e-03

e02cac NAG Library Manual

e02cac.10 Mark 25

4.0000 2.4000 6.3563 6.3527 -3.50e-03
4.0000 2.7000 6.5498 6.5462 -3.64e-03
4.0000 3.1000 6.8171 6.8132 -3.98e-03
4.0000 3.5000 7.0953 7.0909 -4.49e-03

Chebyshev coefficients of the fit

15.3482 5.1507 0.1014
1.1472 0.1442 -0.1046
0.0490 -0.0031 -0.0070
0.0015 -0.0003 -0.0002

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
it

te
d

P
ol

yn
om

ia
ls

 P
(x

,y
=Y

)

x

Example Program
Calculation and Evaluation of Least-squares Bi-variate Polynomial Fit

y = 4

y = 2

y = 1

y = 0

polynomials in x for constant y
50∗residual
data points

e02 – Curve and Surface Fitting e02cac

Mark 25 e02cac.11 (last)

	e02cac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Clenshaw and Hayes (1965)
	Hayes (1970)

	5 Arguments
	m
	n
	k
	l
	x
	y
	f
	w
	a
	xmin
	xmax
	nux
	inuxp1
	nuy
	inuyp1
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_INT_ARRAY
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_NON_ZERO_WEIGHTS
	NE_NOT_NON_DECREASING
	NE_NOT_STRICTLY_INCREASING
	NE_REAL_ARRAY

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

