
NAG Library Function Document

nag_1d_spline_deriv (e02bcc)

1 Purpose

nag_1d_spline_deriv (e02bcc) evaluates a cubic spline and its first three derivatives from its B-spline
representation.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_1d_spline_deriv (Nag_DerivType derivs, double x, double s[],
Nag_Spline *spline, NagError *fail)

3 Description

nag_1d_spline_deriv (e02bcc) evaluates the cubic spline s xð Þ and its first three derivatives at a
prescribed argument x. It is assumed that s xð Þ is represented in terms of its B-spline coefficients ci, for
i ¼ 1; 2; . . . ; �nþ 3 and (augmented) o rde red kno t se t �i, fo r i ¼ 1; 2; . . . ; �nþ 7, (see
nag_1d_spline_fit_knots (e02bac)), i.e.,

s xð Þ ¼
Xq

i¼1

ciNi xð Þ

Here q ¼ �nþ 3, �n is the number of intervals of the spline and Ni xð Þ denotes the normalized B-spline of
degree 3 (order 4) defined upon the knots �i; �iþ1; . . . ; �iþ4. The prescribed argument x must satisfy
�4 � x � ��nþ4.

At a simple knot �i (i.e., one satisfying �i�1 < �i < �iþ1), the third derivative of the spline is in general
discontinuous. At a multiple knot (i.e., two or more knots with the same value), lower derivatives, and
even the spline itself, may be discontinuous. Specifically, at a point x ¼ u where (exactly) r knots
coincide (such a point is termed a knot of multiplicity r), the values of the derivatives of order 4� j, for
j ¼ 1; 2; . . . ; r, are in general discontinuous. (Here 1 � r � 4; r > 4 is not meaningful.) You must specify
whether the value at such a point is required to be the left- or right-hand derivative.

The method employed is based upon:

(i) carrying out a binary search for the knot interval containing the argument x (see Cox (1978)),

(ii) evaluating the nonzero B-splines of orders 1,2,3 and 4 by recurrence (see Cox (1972) and Cox
(1978)),

(iii) computing all derivatives of the B-splines of order 4 by applying a second recurrence to these
computed B-spline values (see de Boor (1972)),

(iv) multiplying the 4th-order B-spline values and their derivative by the appropriate B-spline
coefficients, and summing, to yield the values of s xð Þ and its derivatives.

nag_1d_spline_deriv (e02bcc) can be used to compute the values and derivatives of cubic spline fits and
interpolants produced by nag_1d_spline_fit_knots (e02bac), nag_1d_spline_fit (e02bec) or
nag_1d_spline_interpolant (e01bac).

If only values and not derivatives are required, nag_1d_spline_evaluate (e02bbc) may be used instead of
nag_1d_spline_deriv (e02bcc), which takes about 50% longer than nag_1d_spline_evaluate (e02bbc).

e02 – Curve and Surface Fitting e02bcc

Mark 25 e02bcc.1

4 References

Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134–149

Cox M G (1978) The numerical evaluation of a spline from its B-spline representation J. Inst. Math.
Appl. 21 135–143

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

5 Arguments

1: derivs – Nag_DerivType Input

On entry: derivs, of type Nag_DerivType, specifies whether left- or right-hand values of the spline
and its derivatives are to be computed (see Section 3). Left- or right-hand values are formed
according to whether derivs is equal to Nag LeftDerivs or Nag RightDerivs respectively. If x does
not coincide with a knot, the value of derivs is immaterial. If x ¼ spline!lamda½3�, right-hand
values are computed, and if x ¼ spline!lamda½spline!n� 4�), left-hand values are formed,
regardless of the value of derivs.

Constraint: derivs ¼ Nag LeftDerivs or Nag RightDerivs.

2: x – double Input

On entry: the argument x at which the cubic spline and its derivatives are to be evaluated.

Constraint: spline!lamda½3� � x � spline!lamda½spline!n� 4�.

3: s½4� – double Output

On exit: s½j� contains the value of the jth derivative of the spline at the argument x, for
j ¼ 0; 1; 2; 3. Note that s½0� contains the value of the spline.

4: spline – Nag_Spline *

Pointer to structure of type Nag_Spline with the following members:

n – Integer Input

On entry: �nþ 7, where �n is the number of intervals of the spline (which is one greater than
the number of interior knots, i.e., the knots strictly within the range �4 to ��nþ4 over which
the spline is defined).

Constraint: spline!n � 8.

lamda – double Input

On entry: a pointer to which memory of size spline!n must be allocated.
spline!lamda½j � 1� must be set to the value of the jth member of the complete set of
knots, �j , for j ¼ 1; 2; . . . ; �nþ 7.

Constraint: the �j must be in nondecreasing order with
spline!lamda½spline!n� 4� > spline!lamda½3�.

c – double Input

On entry: a pointer to which memory of size spline!n� 4 must be allocated. spline!c
holds the coefficient ci of the B-spline Ni xð Þ, for i ¼ 1; 2; . . . ; �nþ 3.

Under normal usage, the call to nag_1d_spline_deriv (e02bcc) will follow a call to
nag_1d_spline_fit_knots (e02bac), nag_1d_spline_interpolant (e01bac) or nag_1d_spline_fit
(e02bec). In that case, the structure spline will have been set up correctly for input to
nag_1d_spline_deriv (e02bcc).

5: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

e02bcc NAG Library Manual

e02bcc.2 Mark 25

6 Error Indicators and Warnings

NE_ABSCI_OUTSIDE_KNOT_INTVL

On entry, x must satisfy spline!lamda½3� � x � spline!lamda½spline!n� 4�:
spline!lamda½3� ¼ valueh i, x ¼ valueh i, spline!lamda½ valueh i� ¼ valueh i.

NE_BAD_PARAM

On entry, argument derivs had an illegal value.

NE_INT_ARG_LT

On entry, spline!n must not be less than 8: spline!n ¼ valueh i.

NE_SPLINE_RANGE_INVALID

On entry, the cubic spline range is invalid:
spline!lamda½3� ¼ valueh i while spline!lamda½spline!n� 4� ¼ valueh i.
These must satisfy spline!lamda½3� < spline!lamda½spline!n� 4�.

7 Accuracy

The computed value of s xð Þ has negligible error in most practical situations. Specifically, this value has
an absolute error bounded in modulus by 18� cmax� machine precision, where cmax is the largest in
modulus of cj; cjþ1; cjþ2 and cjþ3, and j is an integer such that �jþ3 � x � �jþ4. If cj; cjþ1; cjþ2 and cjþ3

are all of the same sign, then the computed value of s xð Þ has relative error bounded by 20� machine
precision. For full details see Cox (1978).

No complete error analysis is available for the computation of the derivatives of s xð Þ. However, for most
practical purposes the absolute errors in the computed derivatives should be small.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by this function is approximately linear in log �nþ 7ð Þ.
Note: the function does not test all the conditions on the knots given in the description of spline!lamda
in Section 5, since to do this would result in a computation time approximately linear in �nþ 7 instead of
log �nþ 7ð Þ. All the conditions are tested in nag_1d_spline_fit_knots (e02bac), however, and the knots
returned by nag_1d_spline_interpolant (e01bac) or nag_1d_spline_fit (e02bec) will satisfy the conditions.

10 Example

Compute, at the 7 arguments x ¼ 0, 1, 2, 3, 4, 5, 6, the left- and right-hand values and first 3 derivatives
of the cubic spline defined over the interval 0 � x � 6 having the 6 interior knots x ¼ 1, 3, 3, 3, 4, 4,
the 8 additional knots 0, 0, 0, 0, 6, 6, 6, 6, and the 10 B-spline coefficients 10, 12, 13, 15, 22, 26, 24,
18, 14, 12.

The input data items (using the notation of Section 5) comprise the following values in the order
indicated:

�n m
spline!lamda½j� for j ¼ 0; 1; . . . ; �nþ 6
spline!c½j�, for j ¼ 0; 1; . . . ; �nþ 2
x m values of x

e02 – Curve and Surface Fitting e02bcc

Mark 25 e02bcc.3

The example program is written in a general form that will enable the values and derivatives of a cubic
spline having an arbitrary number of knots to be evaluated at a set of arbitrary points. Any number of
datasets may be supplied.

10.1 Program Text

/* nag_1d_spline_deriv (e02bcc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 2, 1991.
*
* Mark 3 revised, 1994.
* Mark 8 revised, 2004.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{

Integer exit_status = 0, i, j, l, m, ncap, ncap7;
NagError fail;
Nag_DerivType derivs;
Nag_Spline spline;
double s[4], x;

INIT_FAIL(fail);

/* Initialise spline */
spline.lamda = 0;
spline.c = 0;

printf("nag_1d_spline_deriv (e02bcc) Example Program Results\n");
#ifdef _WIN32

scanf_s("%*[^\n]"); /* Skip heading in data file */
#else

scanf("%*[^\n]"); /* Skip heading in data file */
#endif
#ifdef _WIN32

while (scanf_s("%"NAG_IFMT"%"NAG_IFMT"", &ncap, &m) != EOF)
#else

while (scanf("%"NAG_IFMT"%"NAG_IFMT"", &ncap, &m) != EOF)
#endif

{
if (m <= 0)

{
printf("Invalid m.\n");
exit_status = 1;
return exit_status;

}
if (ncap > 0)

{
ncap7 = ncap+7;
spline.n = ncap7;
if (!(spline.c = NAG_ALLOC(ncap7, double)) ||

!(spline.lamda = NAG_ALLOC(ncap7, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
{

printf("Invalid ncap.\n");

e02bcc NAG Library Manual

e02bcc.4 Mark 25

exit_status = 1;
return exit_status;

}
for (j = 0; j < ncap7; j++)

#ifdef _WIN32
scanf_s("%lf", &(spline.lamda[j]));

#else
scanf("%lf", &(spline.lamda[j]));

#endif
for (j = 0; j < ncap+3; j++)

#ifdef _WIN32
scanf_s("%lf", &(spline.c[j]));

#else
scanf("%lf", &(spline.c[j]));

#endif
printf(" x Spline 1st deriv "

"2nd deriv 3rd deriv");
for (i = 1; i <= m; i++)

{
#ifdef _WIN32

scanf_s("%lf", &x);
#else

scanf("%lf", &x);
#endif

derivs = Nag_LeftDerivs;
for (j = 1; j <= 2; j++)

{
/* nag_1d_spline_deriv (e02bcc).
* Evaluation of fitted cubic spline, function and
* derivatives
*/

nag_1d_spline_deriv(derivs, x, s, &spline, &fail);
if (fail.code != NE_NOERROR)

{
printf(

"Error from nag_1d_spline_deriv (e02bcc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

if (derivs == Nag_LeftDerivs)
{

printf("\n\n%11.4f Left", x);
for (l = 0; l < 4; l++)

printf("%11.4f", s[l]);
}

else
{

printf("\n%11.4f Right", x);
for (l = 0; l < 4; l++)

printf("%11.4f", s[l]);
}

derivs = Nag_RightDerivs;
}

}
printf("\n");

END:
NAG_FREE(spline.c);
NAG_FREE(spline.lamda);

}
return exit_status;

}

e02 – Curve and Surface Fitting e02bcc

Mark 25 e02bcc.5

10.2 Program Data

nag_1d_spline_deriv (e02bcc) Example Program Data
7 7

0.0 0.0 0.0 0.0 1.0 3.0 3.0 3.0
4.0 4.0 6.0 6.0 6.0 6.0

10.0 12.0 13.0 15.0 22.0 26.0 24.0 18.0
14.0 12.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0

10.3 Program Results

nag_1d_spline_deriv (e02bcc) Example Program Results
x Spline 1st deriv 2nd deriv 3rd deriv

0.0000 Left 10.0000 6.0000 -10.0000 10.6667
0.0000 Right 10.0000 6.0000 -10.0000 10.6667

1.0000 Left 12.7778 1.3333 0.6667 10.6667
1.0000 Right 12.7778 1.3333 0.6667 3.9167

2.0000 Left 15.0972 3.9583 4.5833 3.9167
2.0000 Right 15.0972 3.9583 4.5833 3.9167

3.0000 Left 22.0000 10.5000 8.5000 3.9167
3.0000 Right 22.0000 12.0000 -36.0000 36.0000

4.0000 Left 22.0000 -6.0000 0.0000 36.0000
4.0000 Right 22.0000 -6.0000 0.0000 1.5000

5.0000 Left 16.2500 -5.2500 1.5000 1.5000
5.0000 Right 16.2500 -5.2500 1.5000 1.5000

6.0000 Left 12.0000 -3.0000 3.0000 1.5000
6.0000 Right 12.0000 -3.0000 3.0000 1.5000

e02bcc NAG Library Manual

e02bcc.6 (last) Mark 25

	e02bcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Cox (1972)
	Cox (1978)
	de Boor (1972)

	5 Arguments
	derivs
	x
	s
	spline
	n
	lamda
	c

	fail

	6 Error Indicators and Warnings
	NE_ABSCI_OUTSIDE_KNOT_INTVL
	NE_BAD_PARAM
	NE_INT_ARG_LT
	NE_SPLINE_RANGE_INVALID

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

