e02 — Curve and Surface Fitting e02bbc

NAG Library Function Document
nag_1d_spline_evaluate (e02bbc)

1 Purpose

nag 1d spline evaluate (e02bbc) evaluates a cubic spline from its B-spline representation.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_1ld_spline_evaluate (double x, double *s, Nag_Spline *spline,
NagError *fail)

3 Description

nag_ld_spline evaluate (e02bbc) evaluates the cubic spline s(z) at a prescribed argument z from its
augmented knot set \;, for i=1,2,..., 7+ 7, (see nag_ld spline fit knots (e02bac)) and from the
coefficients ¢;, for i =1,2,...,q, in its B-spline representation

s(x) = ZciNi(x)

Here ¢ = n + 3, where n is the number of intervals of the spline, and N;(x) denotes the normalized B-
spline of degree 3 defined upon the knots A\;, A\;iq,..., A\;jy4. The prescribed argument x must satisfy
A <z < Aiya.

It is assumed that \; > Aj_y, for j =2,3,...,n+7, and A4 > 4.

The method employed is that of evaluation by taking convex combinations due to de Boor (1972). For
further details of the algorithm and its use see Cox (1972) and Cox (1978).

It is expected that a common use of nag_1d_spline_evaluate (e02bbc) will be the evaluation of the cubic
spline approximations produced by nag 1d spline fit knots (e02bac). A generalization of
nag ld_spline evaluate (e02bbc) which also forms the derivative of s(z) is nag 1d spline deriv
(e02bcc). nag_1d_spline deriv (e02bcc) takes about 50% longer than nag 1d spline evaluate (e02bbc).

4 References
Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134—149

Cox M G (1978) The numerical evaluation of a spline from its B-spline representation J. Inst. Math.
Appl. 21 135-143

Cox M G and Hayes J G (1973) Curve fitting: a guide and suite of algorithms for the non-specialist user
NPL Report NAC26 National Physical Laboratory

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50—62

S Arguments

1: x — double Input
On entry: the argument = at which the cubic spline is to be evaluated.

Constraint: spline—lamda[3] < x < spline—lamda[spline—n — 4].

Mark 25 e02bbc.1

e02bbc NAG Library Manual

6

s — double * Output

On exit: the value of the spline, s(x).

spline — Nag_Spline *

Pointer to structure of type Nag Spline with the following members:

n — Integer Input

On entry: n + 7, where @ is the number of intervals (one greater than the number of interior
knots, i.e., the knots strictly within the range A4 to A;.4) over which the spline is defined.

Constraint: spline—n > 8.
lamda — double * Input

On entry: a pointer to which memory of size spline—n must be allocated.
spline—lamda[j — 1] must be set to the value of the jth member of the complete set of
knots, A; for j=1,2,...,n+7.

Constraint: the \; must be in nondecreasing order with
spline—lamda[spline—n — 4] > spline—lamda[3].

¢ — double * Input

On entry: a pointer to which memory of size spline—n — 4 must be allocated. spline—c
holds the coefficient ¢; of the B-spline N;(x), for i =1,2,...,7n+ 3.

Under normal usage, the call to nag 1d spline evaluate (e02bbc) will follow a call to
nag 1d_spline fit knots (e02bac), nag 1d spline interpolant (eOlbac) or nag 1d spline fit
(e02bec). In that case, the structure spline will have been set up correctly for input to
nag 1d spline evaluate (e02bbc).

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ABSCI_OUTSIDE_KNOT_INTVL

On entry, x must satisfy spline—lamda[3] < x < spline—lamda[spline—n — 4]
spline—lamda|3] = (value), x = (value), spline—lamdal(value)] = (value).
In this case s is set arbitrarily to zero.

NE_INT_ARG_LT

7

On entry, spline—n must not be less than 8: spline—n = (value).

Accuracy

The computed value of s(x) has negligible error in most practical situations. Specifically, this value has
an absolute error bounded in modulus by 18 X ¢y X machine precision, where cp,x 1s the largest in
modulus of ¢;, ¢jy1,¢j42 and ¢jy3, and j is an integer such that A\j 3 <o < Ajy4. If ¢, ¢j11, ¢j42 and cjp3
are all of the same sign, then the computed value of s(x) has a relative error not exceeding 20x machine
precision in modulus. For further details see Cox (1978).

8

Parallelism and Performance

Not applicable.

e02bbc.2 Mark 25

e02 — Curve and Surface Fitting e02bbc

9 Further Comments

The time taken by nag 1d spline evaluate (e02bbc) is approximately C x(1+ 0.1 x log(n + 7))
seconds, where C is a machine-dependent constant.

Note: the function does not test all the conditions on the knots given in the description of spline—lamda
in Section 5, since to do this would result in a computation time approximately linear in 7 + 7 instead of
log (7 + 7). All the conditions are tested in nag_1d spline fit knots (e02bac), however, and the knots
returned by nag_1d_spline interpolant (eOlbac) or nag 1d spline fit (e02bec) will satisfy the conditions.

10 Example

Evaluate at 9 equally-spaced points in the interval 1.0 < z < 9.0 the cubic spline with (augmented) knots
1.0, 1.0, 1.0, 1.0, 3.0, 6.0, 8.0, 9.0, 9.0, 9.0, 9.0 and normalized cubic B-spline coefficients 1.0, 2.0, 4.0,
7.0, 6.0, 4.0, 3.0.

The example program is written in a general form that will enable a cubic spline with 7 intervals, in its
normalized cubic B-spline form, to be evaluated at m equally-spaced points in the interval
spline—lamda|3] < x < spline—lamda|n + 3]. The program is self-starting in that any number of
datasets may be supplied.

10.1 Program Text

/* nag_1d_spline_evaluate (e02bbc) Example Program.

Copyright 2014 Numerical Algorithms Group.

Mark 3 revised, 1994.

*

*

*

* Mark 2, 1991.

*

*

* Mark 8 revised, 2004.

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)

{
Integer exit_status = 0, j, m, ncap, ncap7, r;
Nag_Spline spline;
double a, b, s, x;

NagError fail;
INIT_FAIL(fail);

/* Initialise spline */
spline.lamda = 0;
spline.c = 0;

printf("nag_1d_spline_evaluate (e02bbc) Example Program Results\n");
#ifdef _WIN32
scanf_s("s*["\nl]"); /* Skip heading in data file */

#else

scanf ("$*["\nl"); /* Skip heading in data file */
#endif
#ifdef _WIN32

while (scanf_s("%"NAG_IFMT"", &m) != EOF)
#else

while (scanf("%"NAG_IFMT"", &m) != EOF)
#endif

{
if (m <= 0)

{
printf("Invalid m.\n");
exit_status = 1;

Mark 25 e02bbc.3

e02bbc

return exit_status;

¥
#ifdef _WIN32
scanf_s("$"NAG_IFMT"", &ncap);
#else
scanf ("%"NAG_IFMT"", &ncap);
#endif
ncap?7 = ncap+7;
if (ncap > 0)
{
spline.n = ncap7;
if (!(spline.c = NAG_ALLOC(ncap7, double)) ||
! (spline.lamda = NAG_ALLOC(ncap7, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
3

else

printf("Invalid ncap.\n");
exit_status = 1;
return exit_status;
¥
for (j = 0; j < ncap7; j++)
#ifdef _WIN32
scanf_s("$1f", &(spline.lamdaljl));
#else
scanf ("$1f", &(spline.lamdaljl));
#endif
for (j = 0; j < ncap+3; j++)
#ifdef _WIN32
scanf_s("%1f", &(spline.c[3]));
#else
scanf ("$1f", &(spline.c[j]));
#endif
a = spline.lamdal3];
b = spline.lamdalncap+3];

printf ("Augmented set of knots stored in spline.lamda:\n");

for (j = 0; j < ncap7; j++)
printf("%10.4f%s", spline.lamdalj]l,
(j%6 == 5 || j == ncap7-1)2"\n":" ");
printf ("\nB-spline coefficients stored in spline.c\n\n");
for (j = 0; j < ncap+3; j++)
printf("%10.4f%s", spline.c[j],
(jz6 == |l j == ncap+2)?"\n":" ");
printf ("\n X Value of cubic spline\n\n");
for (r = 1; r <= m; ++1)

{

NAG Library Manual

x = ((double) (m-r) * a + (double)(r-1) * b) / (double) (m-1);

/* nag_1d_spline_evaluate (e02bbc).
* Evaluation of fitted cubic spline, function only
*
/
nag_1ld_spline_evaluate(x, &s, &spline, &fail);
if (fail.code != NE_NOERROR)
{
printf(

"Error from nag_1ld_spline_evaluate (e02bbc).\n%s\n",

fail.message) ;
exit_status = 1;
goto END;
¥
printf("%10.4£%15.4f\n", x, s);
¥
NAG_FREE (spline.c);
NAG_FREE (spline.lamda) ;
}
END:
return exit_status;

}

e02bbc.4

Mark 25

e02 — Curve and Surface Fitting e02bbc

10.2 Program Data

nag_1d_spline_evaluate (e02bbc) Example Program Data
9
4
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

WHhAOAIDBNNF,FOOVOVOWOOOWRRERERE

10.3 Program Results

nag_1d_spline_evaluate (e02bbc) Example Program Results

Augmented set of knots stored in spline.lamda:
1.0000 1.0000 1.0000 1.0000 3.0000 6.0000
8.0000 9.0000 9.0000 9.0000 9.0000

B-spline coefficients stored in spline.c

1.0000 2.0000 4.0000 7.0000 6.0000 4.0000
3.0000
X Value of cubic spline

1.0000 1.0000

2.0000 2.3779

3.0000 3.6229

4.0000 4.8327

5.0000 5.8273

6.0000 6.3571

7.0000 6.1905

8.0000 5.1667

9.0000 3.0000

Mark 25 e02bbc.5 (last)

	e02bbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Cox (1972)
	Cox (1978)
	Cox and Hayes (1973)
	de Boor (1972)

	5 Arguments
	x
	s
	spline
	n
	lamda
	c

	fail

	6 Error Indicators and Warnings
	NE_ABSCI_OUTSIDE_KNOT_INTVL
	NE_INT_ARG_LT

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

