e0l — Interpolation e0ldac

NAG Library Function Document
nag_2d_spline_interpolant (e01dac)

1 Purpose

nag 2d spline interpolant (e01dac) computes a bicubic spline interpolating surface through a set of data
values, given on a rectangular grid in the z-y plane.

2 Specification

#include <nag.h>
#include <nage0l.h>

void nag_2d_spline_interpolant (Integer mx, Integer my, const double x[],
const double y[], const double f[], Nag_2dSpline *spline,
NagError *fail)

3 Description

nag 2d spline interpolant (eOldac) determines a bicubic spline interpolant to the set of data points
(mq,yr,fqﬁr), for ¢=1,2,...,m; and r=1,2,...,m,. The spline is given in the B-spline
representation

my My

s(z,y) = Z ZCijMi(fE)Nj(y)

i=1 j=1
such that

S(l‘q, yr) = fq,ry

where M;(x) and N,(y) denote normalized cubic B-splines, the former defined on the knots \; to A 4
and the latter on the knots y; to 144, and the ¢;; are the spline coefficients. These knots, as well as the
coefficients, are determined by the function, which is derived from the routine B2IRE in Anthony et al.
(1982). The method used is described in Section 9.1.

For further information on splines, see Hayes and Halliday (1974) for bicubic splines and de Boor
(1972) for normalized B-splines.

Values and derivatives of the computed spline can subsequently be computed by calling
nag 2d _spline _eval (e02dec), nag 2d spline eval rect (e02dfc) and nag 2d spline deriv_rect
(e02dhc) as described in Section 9.2.

4 References

Anthony G T, Cox M G and Hayes J G (1982) DASL — Data Approximation Subroutine Library National
Physical Laboratory

Cox M G (1975) An algorithm for spline interpolation J. Inst. Math. Appl. 15 95-108
de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50—62

Hayes J G and Halliday J (1974) The least squares fitting of cubic spline surfaces to general data sets J.
Inst. Math. Appl. 14 89-103
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S  Arguments

: mx — Integer Input
2: my — Integer Input

On entry: mx and my must specify m, and m, respectively, the number of points along the = and
y axis that define the rectangular grid.

Constraint: mx > 4 and my > 4.

3: x[mx] — const double Input
y[my| — const double Input
On entry: X[q — 1] and y[r — 1] must contain z,, for ¢ =1,2,...,m,, and y,, for r =1,2,...,m,,
respectively.
Constraints:
X[q 1} <X[q}5 for q:1727 7m.’L‘_1s
ylr—1] <y[r], for r=1,2,...,m, —1
5: fimx x my| — const double Input

On entry: fim, x (¢ — 1) + r — 1] must contain f,,, for ¢=1,2,...,m, and r=1,2,...,m,.

6: spline — Nag 2dSpline *
Pointer to structure of type Nag 2dSpline with the following members:
nx — Integer Output
ny — Integer Output

On exit: nx and ny contain m, + 4 and m, + 4, the total number of knots of the computed
spline with respect to the z and y variables, respectively.

lamda — double * Output

On exit: the pointer to which memory of size nx is internally allocated. lamda contains the
complete set of knots \; associated with the = variable, i.e., the interior knots lamda[4],
lamda[5], ..., lamdajnx—-5], as well as the additional knots
lamda[0] = lamda|[l] = lamda[2] = lamda[3] = x[0] and
lamda[nx — 4] = lamda[nx — 3] = lamda[nx — 2] = lamdanx — 1] = x[mx — 1] needed
for the B-spline representation.

mu — double * Output

On exit: the pointer to which memory of size ny is internally allocated. mu contains the
corresponding complete set of knots p; associated with the y variable.

¢ — double * Output

On exit: the pointer to which memory of size mx x my is internally allocated. ¢ holds the
coefficients of the spline interpolant. ¢[m, x (i — 1) + j — 1] contains the coefficient c;;
described in Section 3.

Note that when the information contained in the pointers lamda, mu and c is no longer of use, or
before a new call to nag 2d spline interpolant (e0ldac) with the same spline, you should free
these pointers using the NAG macro NAG_FREE. This storage will not have been allocated if this
function returns with fail.code # NE_NOERROR.

7: fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).
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6  Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_DATA_ILL_CONDITIONED

An intermediate set of linear equations is singular, the data is too ill-conditioned to compute B-
spline coefficients.

NE_INT_ARG_LT

On entry, mx = (value).
Constraint: mx > 4.

On entry, my = (value).
Constraint: my > 4.
NE_NOT_STRICTLY_INCREASING

The sequence x is not strictly increasing: x[(value)] = (value), x[(value)] = (value).
The sequence y is not strictly increasing: y[(value)] = (value), y[(value)] = (value).

7  Accuracy

The main sources of rounding errors are in steps 1, 3, 6 and 7 of the algorithm described in Section 9.1.
It can be shown (Cox (1975)) that the matrix A, formed in step 2 has elements differing relatively from
their true values by at most a small multiple of 3¢, where ¢ is the machine precision. A, is ‘totally
positive’, and a linear system with such a coefficient matrix can be solved quite safely by elimination
without pivoting. Similar comments apply to steps 6 and 7. Thus the complete process is numerically
stable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_2d_spline_interpolant (eOldac) is approximately proportional to m,m,,.

9.1 CQutline of Method Used
The process of computing the spline consists of the following steps:
1. choice of the interior z-knots As, Ag,..., Ay, as A; = x,_2, for ¢ =5,6,...,m,,
2. formation of the system
AE=F,

where A, is a band matrix of order m, and bandwidth 4, containing in its gth row the values at z,
of the B-splines in x, I is the m, by m, rectangular matrix of values f,,, and £ denotes an m,
by m, rectangular matrix of intermediate coefficients,

use of Gaussian elimination to reduce this system to band triangular form,
solution of this triangular system for E,

choice of the interior y knots us, pie, - -, fln, 88 fti = yi—2, for i =15,6,...,m,,

A

formation of the system

A,CT=E",
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where A, is the counterpart of A, for the y variable, and C' denotes the m, by m, rectangular
matrix of values of ¢;;,

7. use of Gaussian elimination to reduce this system to band triangular form,
8. solution of this triangular system for CT and hence C.

For computational convenience, steps 2 and 3, and likewise steps 6 and 7, are combined so that the
formation of A, and A, and the reductions to triangular form are carried out one row at a time.

9.2 Evaluation of Computed Spline

The values of the computed spline at the points (tx[r — 1],ty[r —1]), for »=1,2,...,n, may be
obtained in the array ff, of length at least n, by the following call:

e02dec (n, tx, ty, ff, &spline, &fail)

where spline is a structure of type Nag 2dSpline which is the output argument of
nag 2d spline interpolant (e01dac).

To evaluate the computed spline on a kx by Ky rectangular grid of points in the z-y plane, which is
defined by the x coordinates stored in tx[¢ — 1], for ¢ = 1,2,...,kx, and the y coordinates stored in
ty[r — 1], for r = 1,2,...,Ky, returning the results in the array fg which is of length at least kx x Ky, the
following call may be used:

e02dfc (kx, ky, tx, ty, fg, &spline, &fail)

where spline is a structure of type Nag 2dSpline which is the output argument of
nag_2d_spline_interpolant (e0ldac). The result of the spline evaluated at grid point (g,7) is returned
in element [Ky x (¢ — 1) +r — 1] of the array fg.

10 Example

This program reads in values of m,, z,, for ¢=1,2,...,m,, m, and y,, for r =1,2,...,m,, followed
by values of the ordinates f,, defined at the grid points (:rq, yr). It then calls nag_2d spline_interpolant
(e0ldac) to compute a bicubic spline interpolant of the data values, and prints the values of the knots
and B-spline coefficients. Finally it evaluates the spline at a small sample of points on a rectangular grid.

10.1 Program Text

/* nag_2d_spline_interpolant (eOldac) Example Program.
Copyright 2014 Numerical Algorithms Group.

Mark 2, 1991.

* % Kk ok ok ok

Mark 6 revised, 2000.
Mark 8 revised, 2004.

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nageOl.h>
#include <nage02.h>

#define F(I, J) flmy*(I)+(J)]
#define FG(I, J) fglnpy*(I)+(J
#define C(I, J) spline.c[my*(
int main(void)

)]
I)+(J)]1

{
Integer exit_status = 0, i, j, mx, my, npx, npy;
NagError fail;
Nag_2dSpline spline;
double *f = 0, *fg = 0, step, *tx = 0, *ty = 0, *x = 0, xhi, xlo;
double *y = 0, yhi, vylo;

eOldac.4 Mark 25



e0l — Interpolation e0ldac

INIT FAIL(fail);

/* Initialise spline */
spline.lamda = 0;
spline.mu = 0;

spline.c = 0;

printf(
"nag_2d_spline_interpolant (eOldac) Example Program Results\n");
#ifdef _WIN32
scanf_s("%*["\n]"); /* Skip heading in data file */
#else
scanf ("$*[*\nl]"); /* Skip heading in data file */
#endif
/* Read the number of x points, mx, and the values of the
* x co-ordinates.
*/
#ifdef _WIN32
scanf_s("%"NAG_IFMT"%"NAG_IFMT"", &mx, &my);

#else
scanf ("$"NAG_IFMT"%"NAG_IFMT"", &mx, &my) ;
#endif
if (mx >= 4 && my >= 4)
{
if (! (f = NAG_ALLOC (mx*my, double)) ||
| (x = NAG_ALLOC (mx, double)) ||
! (y = NAG_ALLOC (my, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
¥
}
else
{
printf("Invalid mx or my.\n");
exit_status = 1;
return exit_status;
}
for (i = 0; 1 < mx; i++)

#ifdef _WIN32
scanf_s("s1f", &x[i]);
#else
scanf ("$1f", &x[i]);
#endif
/* Read the number of y points, my, and the values of the
* y co-ordinates.
*/
for (i = 0; i < my; i++)
#ifdef _WIN32
scanf_s("$1f", &yl[il);
#else
scanf ("s1f", &ylil);
#endif
/* Read the function values at the grid points. */
for (j = 0; J < my; Jj++)
for (i = 0; 1 < mx; i++)
#ifdef _WIN32
scanf_s("%1f", &F (i, Jj));
#else
scanf ("s1f", &F (i, 3));
#endif
/* Generate the (x,y,f) interpolating bicubic B-spline. */
/* nag_2d_spline_interpolant (eOldac).
* Interpolating function, bicubic spline interpolant, two
* variables

*/
nag_2d_spline_interpolant(mx, my, x, y, £, &spline, &fail);
if (fail.code != NE_NOERROR)
{

printf ("Error from nag_2d_spline_interpolant (eOldac).\n%s\n",
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fail.message) ;
exit_status = 1;
goto END;
3

/* Print the knot sets, lamda and mu. */
printf("Distinct knots in x direction located at\n");
for (j = 3; j < spline.nx-3; j++)

printf("%12.4f%s", spline.lamdaljl,

((3=3)%5 == || jJ == spline.nx-4)?"\n":" ");
printf ("\nDistinct knots in y direction located at\n");
for (j = 3; j < spline.ny-3; j++)

printf("%12.4f%s", spline.muljl],

((3j=3)%5 == 4 || j == spline.ny-4)?2"\n":" ");
/* Print the spline coefficients. */
printf ("\nThe B-Spline coefficients:\n");
for (i = 0; 1 < mx; i++)

{
for (j = 0; j < my; J++)
printf("$9.4f", C(i, 3));
printf ("\n");
¥

/* Evaluate the spline on a regular rectangular grid at npx*npy
* points over the domain (xlo to xhi) x (ylo to yhi).
*
/
#ifdef _WIN32
scanf_s("%$"NAG_IFMT"%1f%1f", &npx, &xlo, &xhi);
#else
scanf ("$"NAG_IFMT"%1f%1f", &npx, &xlo, &xhi);
#endif
#ifdef _WIN32
scanf_s("%"NAG_IFMT"%1f%1f", &npy, &ylo, &yhi);
#else
scanf ("$"NAG_IFMT"%1f%1f", &npy, &ylo, &yhi);
#endif
if (npx >= 1 && npy >= 1)
{
if (! (fg = NAG_ALLOC (npx*npy, double)) ||
T(tx NAG_ALLOC (npx, double)) ||
! (ty = NAG_ALLOC(npy, double)))

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
else
{
printf("Invalid npx or npy.\n");
exit_status = 1;
return exit_status;
3
step = (xhi-xlo)/(double) (npx-1);
printf ("\nSpline evaluated on a regular mesh "
" (x across, y down): \n ")
/* Generate nx equispaced x co-ordinates. */
for (i = 0; i < npx; i++)
{
tx[i] = MIN(xlo+i*step, xhi);
printf (" %x5.2f ", tx[i]);
}
step = (yhi-ylo)/(npy-1);
for (i = 0; i < npy; i++)
ty[i] = MIN(ylo+i*step, yhi);

/* Evaluate the spline. */
/* nag_2d_spline_eval_rect (e02dfc).
* Evaluation of bicubic spline, at a mesh of points
*/
nag_2d_spline_eval_rect(npx, npy, tx, ty, fg, &spline, &fail);
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if (fail.code != NE_NOERROR)
{
printf ("Error from nag_2d_spline_eval_rect (e02dfc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

/* Print the results. */
printf ("\n");
for (j = 0; j < npy; j++)

{
printf ("%5.2f", tyl[jl);
for (i = 0; i < npx; i++)
printf("%8.3f ", FG(i, j));
printf ("\n");
}

/* Free memory allocated by nag_2d_spline_interpolant (eOldac) */
END:

NAG_FREE (spline.lamda) ;

NAG_FREE (spline.mu) ;

NAG_FREE (spline.c);

NAG_FREE(f) ;

NAG_FREE (x) ;

NAG_FREE (y) ;

NAG_FREE (fqg) ;
NAG_FREE (tx) ;
NAG_FREE (ty) ;
return exit_status;

10.2 Program Data

nag_2d_spline_interpolant (eOldac) Example Program Data
7 6

1.00 1.10 1.30 1.50 1.e0 1.80 2.00
0.00 0.10 0.40 0.70 0.90 1.00

1.00 1.21 1.69 2.25 2.56 3.24 4.00
1.10 1.31 1.79 2.35 2.66 3.34 4.10
1.40 1.61 2.09 2.65 2.96 3.64 4.40
1.70 1.91 2.39 2.95 3.26 3.94 4.70
1.90 2.11 2.59 3.15 3.46 4.14 4.90
2.00 2.21 2.69 3.25 3.56 4.24 5.00
6 1.0 2.0

6 0.0 1.0

10.3 Program Results

nag_2d_spline_interpolant (eOldac) Example Program Results
Distinct knots in x direction located at

1.0000 1.3000 1.5000 1.6000 2.0000
Distinct knots in y direction located at
0.0000 0.4000 0.7000 1.0000
The B-Spline coefficients:
1.0000 1.1333 1.3667 1.7000 1.9000 2.0000
1.2000 1.3333 1.5667 1.9000 2.1000 2.2000
1.5833 1.7167 1.9500 2.2833 2.4833 2.5833
2.1433 2.2767 2.5100 2.8433 3.0433 3.1433
2.8667 3.0000 3.2333 3.5667 3.7667 3.8667
3.4667 3.6000 3.8333 4.1667 4.3667 4.4667
4.0000 4.1333 4.3667 4.7000 4.9000 5.0000
Spline evaluated on a regular mesh (x across, y down):
1.00 1.20 1.40 1.60 1.80 2.00
0.00 1.000 1.440 1.960 2.560 3.240 4.000
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