d05 — Integral Equations d05Sbdc

NAG Library Function Document
nag_inteq_abel2 weak (d0Sbdc)

1 Purpose

nag_inteq_abel2 weak (d05bdc) computes the solution of a weakly singular nonlinear convolution
Volterra—Abel integral equation of the second kind using a fractional Backward Differentiation Formulae
(BDF) method.

2 Specification

#include <nag.h>
#include <nagd05.h>

void nag_inteq_abel2_weak (
double (*ck) (double t, Nag_Comm *comm),
double (*cf) (double t, Nag_Comm *comm),
double (*cg) (double s, double y, Nag_Comm *comm),

Nag_WeightMode wtmode, Integer iorder, double tlim, double tolnl,
Integer nmesh, double yn[], double rwsav[], Integer lrwsav,
Nag_Comm *comm, NagError *fail)

3 Description

nag_inteq_abel2 weak (d05bdc) computes the numerical solution of the weakly singular convolution
Volterra—Abel integral equation of the second kind

y(t) = f(t) +\/L7—T A %g(s,y(s)) ds, 0<t<T. (1)

Note the constant ﬁ in (1). It is assumed that the functions involved in (1) are sufficiently smooth.

The function uses a fractional BDF linear multi-step method to generate a family of quadrature rules (see
nag inteq abel weak weights (dO5byc)). The BDF methods available in nag inteq abel2 weak
(d05bdc) are of orders 4, 5 and 6 (= p say). For a description of the theoretical and practical
background to these methods we refer to Lubich (1985) and to Baker and Derakhshan (1987) and Hairer
et al. (1988) respectively.

The algorithm is based on computing the solution y(¢) in a step-by-step fashion on a mesh of equispaced
points. The size of the mesh is given by T'/(N — 1), N being the number of points at which the solution
is sought. These methods require 2p — 1 (including y(0)) starting values which are evaluated internally.
The computation of the lag term arising from the discretization of (1) is performed by fast Fourier
transform (FFT) techniques when N > 32+ 2p — 1, and directly otherwise. The function does not
provide an error estimate and you are advised to check the behaviour of the solution with a different
value of N. An option is provided which avoids the re-evaluation of the fractional weights when
nag_inteq_abel2 weak (d05bdc) is to be called several times (with the same value of /N) within the same
program unit with different functions.

Mark 25 d05bdc.1

d05Sbdc

NAG Library Manual

4 References

Baker C T H and Derakhshan M S (1987) FFT techniques in the numerical solution of convolution
equations J. Comput. Appl. Math. 20 5-24

Hairer E, Lubich Ch and Schlichte M (1988) Fast numerical solution of weakly singular Volterra integral
equations J. Comput. Appl. Math. 23 87-98

Lubich Ch (1985) Fractional linear multistep methods for Abel—Volterra integral equations of the second
kind Math. Comput. 45 463-469

5 Arguments

1: ck — function, supplied by the user External Function

ck must evaluate the kernel k(t) of the integral equation (1).

The specification of ck is:
double ck (double t, Nag_Comm *comm)
1: t — double Input
On entry: t, the value of the independent variable.
2: comm — Nag Comm *
Pointer to structure of type Nag Comm; the following members are relevant to ck.
user — double *
iuser — Integer *
p — Pointer
The type Pointer will be void *. Before calling nag_inteq_abel2 weak (d05bdc)
you may allocate memory and initialize these pointers with various quantities for
use by ck when called from nag inteq abel2 weak (d05bdc) (see Section 3.2.1.1
in the Essential Introduction).
2: cf — function, supplied by the user External Function

cf must evaluate the function f(¢) in (1).

The specification of ef is:
double cf (double t, Nag_Comm *comm)
1:

t — double Input

On entry: t, the value of the independent variable.

comm — Nag Comm *

Pointer to structure of type Nag Comm; the following members are relevant to cf.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag_inteq abel2 weak (d05bdc)
you may allocate memory and initialize these pointers with various quantities for
use by cf when called from nag_inteq abel2 weak (d05bdc) (see Section 3.2.1.1
in the Essential Introduction).

d05bdc.2

Mark 25

d05 — Integral Equations d05Sbdc

3: cg — function, supplied by the user External Function

cg must evaluate the function g(s,y(s)) in (1).

The specification of cg is:
double cg (double s, double y, Nag_Comm *comm)
1: s — double Input

On entry: s, the value of the independent variable.

2: y — double Input
On entry: the value of the solution y at the point s.

3: comm — Nag Comm *

Pointer to structure of type Nag Comm; the following members are relevant to cg.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag_inteq_abel2 weak (d05bdc)
you may allocate memory and initialize these pointers with various quantities for
use by c¢g when called from nag_inteq abel2 weak (d05bdc) (see Section 3.2.1.1
in the Essential Introduction).

4: wtmode — Nag_ WeightMode Input

On entry: if the fractional weights required by the method need to be calculated by the function
then set wtmode = Nag_InitWeights.

If wtmode = Nag_ReuseWeights, the function assumes the fractional weights have been computed
on a previous call and are stored in rwsav.

Constraint: wtmode = Nag_InitWeights or Nag_ReuseWeights.
Note: when nag inteq_abel2 weak (d05bdc) is re-entered with the wvalue of
wtmode = Nag_ReuseWeights, the values of nmesh, iorder and the contents of rwsav MUST
NOT be changed.

5: iorder — Integer Input
On entry: p, the order of the BDF method to be used.
Suggested value: iorder = 4.

Constraint: 4 < iorder < 6.

6: tlim — double Input
On entry: the final point of the integration interval, 7.

Constraint: tlim > 10 X machine precision.

7: tolnl — double Input

On entry: the accuracy required for the computation of the starting value and the solution of the
nonlinear equation at each step of the computation (see Section 9).

Suggested value: tolnl = /e where ¢ is the machine precision.

Constraint: tolnl > 10 X machine precision.

Mark 25 d05bdc.3

d05bdc NAG Library Manual

10:

11:

12:

13:

6

nmesh — Integer Input
On entry: N, the number of equispaced points at which the solution is sought.

Constraint: nmesh = 2™ + 2 x iorder — 1, where m > 1.

yn[nmesh| — double Output
On exit: yn[i— 1] contains the approximate value of the true solution y(t) at the point
t=(i—1)xh, for i=1,2,..., nmesh, where h = tlim/(nmesh — 1).

rwsav[lrwsav] — double Communication Array

On entry: if wtmode = Nag_ReuseWeights, rwsav must contain fractional weights computed by a
previous call of nag_inteq abel2 weak (d05bdc) (see description of wtmode).

On exit: contains fractional weights which may be used by a subsequent call of
nag_inteq_abel2 weak (d05bdc).

Irwsav — Integer Input
On entry: the dimension of the array rwsav.

Constraint: Irwsav > (2 x iorder + 6) x nmesh + 8 x iorder’ — 16 x iorder + 1.

comm — Nag Comm *

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_FAILED START

An error occurred when trying to compute the starting values.

NE_FAILED STEP

An error occurred when trying to compute the solution at a specific step.

NE_INT

On entry, iorder = (value).
Constraint: 4 < iorder < 6.

NE_INT 2

On entry, Irwsav = (value).
Constraint: Irwsav > (2 x iorder + 6) x nmesh + 8 x jorder’ — 16 x iorder + 1; that is, (value).

On entry, nmesh = (value) and iorder = (value).
Constraint: nmesh = 2" 4 2 x iorder — 1, for some m.

d05bdc.4 Mark 25

d05 — Integral Equations d05Sbdc

On entry, nmesh = (value) and iorder = (value).
Constraint: nmesh > 2 x iorder + 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL

On entry, tlim = (value).
Constraints: tlim > 10 X machine precision.

On entry, tolnl = (value).
Constraint: tolnl > 10 x machine precision.

7 Accuracy

The accuracy depends on nmesh and tolnl, the theoretical behaviour of the solution of the integral
equation and the interval of integration. The value of tolnl controls the accuracy required for computing
the starting values and the solution of (2) at each step of computation. This value can affect the accuracy
of the solution. However, for most problems, the value of /¢, where € is the machine precision, should
be sufficient.

8 Parallelism and Performance

nag_inteq abel2 weak (d05bdc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag_inteq abel2 weak (d05bdc) makes calls to BLAS and/or LAPACK routines, which may be threaded
within the vendor library used by this implementation. Consult the documentation for the vendor library
for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

In solving (1), initially, nag_inteq abel2 weak (d05bdc) computes the solution of a system of nonlinear
equations for obtaining the 2p — 1 starting values. nag zero nonlin_eqns_rcomm (c05qdc) is used for
this purpose. When a failure with fail.code = NE_FAILED START occurs (which corresponds to an
error exit from nag zero nonlin _eqns rcomm (c05qdc)), you are advised to either relax the value of
tolnl or choose a smaller step size by increasing the value of nmesh. Once the starting values are
computed successfully, the solution of a nonlinear equation of the form

Y;I, - Oég(tn, Yn) - wn = Oa (2)

is required at each step of computation, where ¥,, and « are constants. nag_inteq_abel2 weak (d05bdc)
calls nag_zero cont_func cntin_rcomm (cO5axc) to find the root of this equation.

If a failure with fail.code = NE FAILED STEP occurs (which corresponds to an error exit from
nag zero cont func cntin rcomm (c05axc)), you are advised to relax the value of the tolnl or choose a
smaller step size by increasing the value of nmesh.

Mark 25 d05bdc.5

d05Sbdc NAG Library Manual

If a failure with fail.code = NE_FAILED START or NE FAILED STEP persists even after adjustments
to tolnl and/or nmesh then you should consider whether there is a more fundamental difficulty. For
example, the problem is ill-posed or the functions in (1) are not sufficiently smooth.

10 Example
In this example we solve the following integral equations
t
1
t—\/i—i—iﬂtz—/ 53ds, 0<t <7,

with the solution y(t) = v/#, and
1

y<t>—<3—t>ﬁ—/o'm

with the solution y(t) = (1 — t)y/%. In the above examples, the fourth-order BDF is used, and nmesh is
set to 2° 4+ 7.

exp(s(l e [y(s)]z)ds, 0<¢<5,

10.1 Program Text

/* nag_inteq _abel2_weak (dO5bdc) Example Program.
*

* Copyright 2014 Numerical Algorithms Group.
*

* Mark 23, 2011.

*/
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd05.h>
#include <nagx0l.h>
#include <nagx02.h>

#ifdef _ cplusplus
extern "C" {
#endif

static double NAG_CALL ckl(double t, Nag_Comm *comm) ;
static double NAG_CALL cfl(double t, Nag_Comm *comm) ;
static double NAG_CALL cgl(double s, double y, Nag_Comm *comm) ;
static double NAG_CALL ck2(double t, Nag_Comm *comm) ;
static double NAG_CALL cf2(double t, Nag_Comm *comm) ;
static double NAG_CALL cg2(double s, double y, Nag_Comm *comm) ;

#ifdef __ cplusplus

¥
#endif

int main(void)
{
/* Scalars */
double h, t, tlim, tolnl;
Integer exit_status = 0;
Integer iorder = 4;
Integer exno, i, iskip, nmesh, lrwsav;
/* Arrays */
static double ruser[6] = {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0};
double “*rwsav = 0, *yn = 0;
/* NAG types */
Nag_Comm comm;
NagError fail;
Nag_WeightMode wtmode;

INIT_FAIL(fail);
printf("nag_inteq _abel2_weak (d05bdc) Example Program Results\n");

/* For communication with user-supplied functions: */

d05bdc.6 Mark 25

d05 — Integral Equations

comm.user = ruser;

nmesh = pow(2, 6) + 7;

lrwsav = (2 * iorder + 6) * nmesh + 8 * pow(iorder, 2) - 16 * iorder + 1;

if (
(yn = NAG_ALLOC (nmesh, double))

! [
! (rwsav = NAG_ALLOC(lrwsav, double))
)

{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
tolnl = sqgrt(nag_machine_precision);
for (exno = 1; exno <= 2; exno++)
{
printf ("\nExample %"NAG_IFMT"\n\n'", exno);
if (exno==1)
{
tlim = 7.0;
iskip = 5;
h = tlim/(double) (nmesh - 1);
wtmode = Nag_InitWeights;
/*
nag_inteq _abel2_weak (d05bdc).
Nonlinear convolution Volterra-Abel equation, second kind,
weakly singular.
*/
nag_inteq_abel2_weak(ckl, cfl, cgl, wtmode, iorder, tlim, tolnl,
nmesh, yn, rwsav, lrwsav, &comm, &fail);
b
else
{
tlim = 5.0;
iskip = 7;
h = tlim/(double) (nmesh - 1);
wtmode = Nag_ReuseWeights;
/* nag_inteq abel2_weak (d05bdc) as above. */
nag_inteq_abel2_weak(ck2, cf2, cg2, wtmode, iorder, tlim, tolnl,
nmesh, yn, rwsav, lrwsav, &comm, &fail);
b
if (fail.code != NE_NOERROR)
{
printf("Error from nag_inteqg abel2_weak (d05bdc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
¥
printf ("The stepsize h = %8.4f\n\n", h);
printf (" t Approximate\n");
printf (" Solution\n\n");
for (i = 0; i < nmesh; i++)
{
t = (double) (i) * h;
if (i%iskip == 0) printf("%8.4f%15.4f\n", t, ynl[i]l);
¥
}
END:

NAG_FREE (rwsav) ;
NAG_FREE (yn) ;

return exit_status;

Mark 25

d0Sbdc

d05bdc.7

d05Sbdc

3

static double NAG_CALL ckl(double t, Nag_Comm *comm)
{

if (comm->user[0] == -1.0)
{
printf (" (User-supplied callback ckl, first invocation.)\n"
comm->user [0] = 0.0;
}

return -sqgrt(nag_pi);
¥
static double NAG_CALL cfl(double t, Nag_Comm *comm)
{

if (comm->user[1l] == -1.0)
{ printf (" (User-supplied callback cfl, first invocation.)\n"
comm->user[1] = 0.0;
reiurn sqrt(t) + (3.0 / 8.0) * nag_pi * pow(t, 2);
;tatic double NAG_CALL cgl(double s, double y, Nag_Comm *comm)
{ if (comm->user[2] == -1.0)
{ printf (" (User-supplied callback cgl, first invocation.)\n"
comm->user [2] = 0.0;
reiurn pow(y, 3);
}

static double NAG_CALL ck2(double t, Nag_Comm *comm)
{

if (comm->user[3] -1.0)
{
printf (" (User-supplied callback ck2,

comm->user [3] 0.0;

first invocation.)\n"

}
return -sqrt(nag_pi);
}
static double NAG_CALL cf2(double t, Nag_Comm *comm)

{

if (comm->user[4]

{

-1.0)

printf (" (User-supplied callback cf2,
comm->user [4] 0.0;

first invocation.)\n"

}

return (3.0 - t) * sqgrt(t);
}
static double NAG_CALL cg2(double s,

{

double y, Nag_Comm *comm)

if (comm->user[5] -1.0)

{

printf (" (User-supplied callback cg2,
comm->user [5] 0.0;

first invocation.)\n"

}

return exp(s * pow(1l.0 - s, 2) - pow(y, 2));

¥
10.2 Program Data

None.

10.3 Program Results

nag_inteqg_abel2_weak (dO5bdc) Example Program Results

Example 1
first invocation.)

first invocation.)
first invocation.)

(User-supplied callback ckl,
(User-supplied callback cfl,
(User-supplied callback cgl,

d05bdc.8

NAG Library Manual

)i

)i

)i

)i

)i

)i

Mark 25

d05 — Integral Equations d05Sbdc

The stepsize h = 0.1000

t Approximate

Solution
0.0000 0.0000
0.5000 0.7071
1.0000 1.0000
1.5000 1.2247
2.0000 1.4142
2.5000 1.5811
3.0000 1.7321
3.5000 1.8708
4.0000 2.0000
4.5000 2.1213
5.0000 2.2361
5.5000 2.3452
6.0000 2.4495
6.5000 2.5495
7.0000 2.6458

Example 2

(User-supplied callback ck2, first invocation.)
(User-supplied callback cf2, first invocation.)
(User-supplied callback cg2, first invocation.)

The stepsize h = 0.0714

t Approximate

Solution
0.0000 0.0000
0.5000 0.3536
1.0000 0.0000
1.5000 -0.6124
2.0000 -1.4142
2.5000 -2.3717
3.0000 -3.40641
3.5000 -4.6771
4.0000 -6.0000
4.5000 -7.4246
5.0000 -8.9443

Mark 25 d05bdc.9 (last)

	d05bdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Baker and Derakhshan (1987)
	Hairer et al. (1988)
	Lubich (1985)

	5 Arguments
	ck
	t
	comm
	user
	iuser
	p

	cf
	t
	comm
	user
	iuser
	p

	cg
	s
	y
	comm
	user
	iuser
	p

	wtmode
	iorder
	tlim
	tolnl
	nmesh
	yn
	rwsav
	lrwsav
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_FAILED_START
	NE_FAILED_STEP
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_REAL

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

