d05 — Integral Equations d05Sbdc

NAG Library Function Document
nag_inteq_abel2 weak (d0Sbdc)

1 Purpose

nag_inteq_abel2 weak (d05bdc) computes the solution of a weakly singular nonlinear convolution
Volterra—Abel integral equation of the second kind using a fractional Backward Differentiation Formulae
(BDF) method.

2 Specification

#include <nag.h>
#include <nagd05.h>

void nag_inteq_abel2_weak (
double (*ck) (double t, Nag_Comm *comm),
double (*cf) (double t, Nag_Comm *comm),
double (*cg) (double s, double y, Nag_Comm *comm),

Nag_WeightMode wtmode, Integer iorder, double tlim, double tolnl,
Integer nmesh, double yn[], double rwsav[], Integer lrwsav,
Nag_Comm *comm, NagError *fail)

3 Description

nag_inteq_abel2 weak (d05bdc) computes the numerical solution of the weakly singular convolution
Volterra—Abel integral equation of the second kind

y(t) = f(t) +\/L7—T A %g(s,y(s)) ds, 0<t<T. (1)

Note the constant ﬁ in (1). It is assumed that the functions involved in (1) are sufficiently smooth.

The function uses a fractional BDF linear multi-step method to generate a family of quadrature rules (see
nag inteq abel weak weights (dO5byc)). The BDF methods available in nag inteq abel2 weak
(d05bdc) are of orders 4, 5 and 6 (= p say). For a description of the theoretical and practical
background to these methods we refer to Lubich (1985) and to Baker and Derakhshan (1987) and Hairer
et al. (1988) respectively.

The algorithm is based on computing the solution y(¢) in a step-by-step fashion on a mesh of equispaced
points. The size of the mesh is given by T'/(N — 1), N being the number of points at which the solution
is sought. These methods require 2p — 1 (including y(0)) starting values which are evaluated internally.
The computation of the lag term arising from the discretization of (1) is performed by fast Fourier
transform (FFT) techniques when N > 32+ 2p — 1, and directly otherwise. The function does not
provide an error estimate and you are advised to check the behaviour of the solution with a different
value of N. An option is provided which avoids the re-evaluation of the fractional weights when
nag_inteq_abel2 weak (d05bdc) is to be called several times (with the same value of /N) within the same
program unit with different functions.
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5  Arguments

1: ck — function, supplied by the user External Function

ck must evaluate the kernel k(t) of the integral equation (1).

The specification of ck is:
double ck (double t, Nag_Comm *comm)
1: t — double Input
On entry: t, the value of the independent variable.
2: comm — Nag Comm *
Pointer to structure of type Nag Comm; the following members are relevant to ck.
user — double *
iuser — Integer *
p — Pointer
The type Pointer will be void *. Before calling nag_inteq_abel2 weak (d05bdc)
you may allocate memory and initialize these pointers with various quantities for
use by ck when called from nag inteq abel2 weak (d05bdc) (see Section 3.2.1.1
in the Essential Introduction).
2: cf — function, supplied by the user External Function

cf must evaluate the function f(¢) in (1).

The specification of ef is:
double cf (double t, Nag_Comm *comm)
1:

t — double Input

On entry: t, the value of the independent variable.

comm — Nag Comm *

Pointer to structure of type Nag Comm; the following members are relevant to cf.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag_inteq abel2 weak (d05bdc)
you may allocate memory and initialize these pointers with various quantities for
use by cf when called from nag_inteq abel2 weak (d05bdc) (see Section 3.2.1.1
in the Essential Introduction).
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3: cg — function, supplied by the user External Function

cg must evaluate the function g(s,y(s)) in (1).

The specification of cg is:
double cg (double s, double y, Nag_Comm *comm)
1: s — double Input

On entry: s, the value of the independent variable.

2: y — double Input
On entry: the value of the solution y at the point s.

3: comm — Nag Comm *

Pointer to structure of type Nag Comm; the following members are relevant to cg.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag_inteq_abel2 weak (d05bdc)
you may allocate memory and initialize these pointers with various quantities for
use by c¢g when called from nag_inteq abel2 weak (d05bdc) (see Section 3.2.1.1
in the Essential Introduction).

4: wtmode — Nag_ WeightMode Input

On entry: if the fractional weights required by the method need to be calculated by the function
then set wtmode = Nag_InitWeights.

If wtmode = Nag_ReuseWeights, the function assumes the fractional weights have been computed
on a previous call and are stored in rwsav.

Constraint: wtmode = Nag_InitWeights or Nag_ReuseWeights.
Note: when nag inteq_abel2 weak (d05bdc) is re-entered with the wvalue of
wtmode = Nag_ReuseWeights, the values of nmesh, iorder and the contents of rwsav MUST
NOT be changed.

5: iorder — Integer Input
On entry: p, the order of the BDF method to be used.
Suggested value: iorder = 4.

Constraint: 4 < iorder < 6.

6: tlim — double Input
On entry: the final point of the integration interval, 7.

Constraint: tlim > 10 X machine precision.

7: tolnl — double Input

On entry: the accuracy required for the computation of the starting value and the solution of the
nonlinear equation at each step of the computation (see Section 9).

Suggested value: tolnl = /e where ¢ is the machine precision.

Constraint: tolnl > 10 X machine precision.
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10:

11:

12:

13:

6

nmesh — Integer Input
On entry: N, the number of equispaced points at which the solution is sought.

Constraint: nmesh = 2™ + 2 x iorder — 1, where m > 1.

yn[nmesh| — double Output
On exit: yn[i— 1] contains the approximate value of the true solution y(t) at the point
t=(i—1)xh, for i=1,2,..., nmesh, where h = tlim/(nmesh — 1).

rwsav[lrwsav] — double Communication Array

On entry: if wtmode = Nag_ReuseWeights, rwsav must contain fractional weights computed by a
previous call of nag_inteq abel2 weak (d05bdc) (see description of wtmode).

On exit: contains fractional weights which may be used by a subsequent call of
nag_inteq_abel2 weak (d05bdc).

Irwsav — Integer Input
On entry: the dimension of the array rwsav.

Constraint: Irwsav > (2 x iorder + 6) x nmesh + 8 x iorder’ — 16 x iorder + 1.

comm — Nag Comm *

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_FAILED START

An error occurred when trying to compute the starting values.

NE_FAILED STEP

An error occurred when trying to compute the solution at a specific step.

NE_INT

On entry, iorder = (value).
Constraint: 4 < iorder < 6.

NE_INT 2

On entry, Irwsav = (value).
Constraint: Irwsav > (2 x iorder + 6) x nmesh + 8 x jorder’ — 16 x iorder + 1; that is, (value).

On entry, nmesh = (value) and iorder = (value).
Constraint: nmesh = 2" 4 2 x iorder — 1, for some m.
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On entry, nmesh = (value) and iorder = (value).
Constraint: nmesh > 2 x iorder + 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL

On entry, tlim = (value).
Constraints: tlim > 10 X machine precision.

On entry, tolnl = (value).
Constraint: tolnl > 10 x machine precision.

7  Accuracy

The accuracy depends on nmesh and tolnl, the theoretical behaviour of the solution of the integral
equation and the interval of integration. The value of tolnl controls the accuracy required for computing
the starting values and the solution of (2) at each step of computation. This value can affect the accuracy
of the solution. However, for most problems, the value of /¢, where € is the machine precision, should
be sufficient.

8 Parallelism and Performance

nag_inteq abel2 weak (d05bdc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag_inteq abel2 weak (d05bdc) makes calls to BLAS and/or LAPACK routines, which may be threaded
within the vendor library used by this implementation. Consult the documentation for the vendor library
for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

In solving (1), initially, nag_inteq abel2 weak (d05bdc) computes the solution of a system of nonlinear
equations for obtaining the 2p — 1 starting values. nag zero nonlin_eqns_rcomm (c05qdc) is used for
this purpose. When a failure with fail.code = NE_FAILED START occurs (which corresponds to an
error exit from nag zero nonlin _eqns rcomm (c05qdc)), you are advised to either relax the value of
tolnl or choose a smaller step size by increasing the value of nmesh. Once the starting values are
computed successfully, the solution of a nonlinear equation of the form

Y;I, - Oég(tn, Yn) - wn = Oa (2)

is required at each step of computation, where ¥,, and « are constants. nag_inteq_abel2 weak (d05bdc)
calls nag_zero cont_func cntin_rcomm (cO5axc) to find the root of this equation.

If a failure with fail.code = NE FAILED STEP occurs (which corresponds to an error exit from
nag zero cont func cntin rcomm (c05axc)), you are advised to relax the value of the tolnl or choose a
smaller step size by increasing the value of nmesh.
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If a failure with fail.code = NE_FAILED START or NE FAILED STEP persists even after adjustments
to tolnl and/or nmesh then you should consider whether there is a more fundamental difficulty. For
example, the problem is ill-posed or the functions in (1) are not sufficiently smooth.

10 Example
In this example we solve the following integral equations
t
1
t—\/i—i—iﬂtz—/ 53ds, 0<t <7,

with the solution y(t) = v/#, and
1

y<t>—<3—t>ﬁ—/o'm

with the solution y(t) = (1 — t)y/%. In the above examples, the fourth-order BDF is used, and nmesh is
set to 2° 4+ 7.

exp(s(l e [y(s)]z)ds, 0<¢<5,

10.1 Program Text

/* nag_inteq _abel2_weak (dO5bdc) Example Program.
*

* Copyright 2014 Numerical Algorithms Group.
*

* Mark 23, 2011.

*/
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd05.h>
#include <nagx0l.h>
#include <nagx02.h>

#ifdef _ cplusplus
extern "C" {
#endif

static double NAG_CALL ckl(double t, Nag_Comm *comm) ;
static double NAG_CALL cfl(double t, Nag_Comm *comm) ;
static double NAG_CALL cgl(double s, double y, Nag_Comm *comm) ;
static double NAG_CALL ck2(double t, Nag_Comm *comm) ;
static double NAG_CALL cf2(double t, Nag_Comm *comm) ;
static double NAG_CALL cg2(double s, double y, Nag_Comm *comm) ;

#ifdef __ cplusplus

¥
#endif

int main(void)
{
/* Scalars */
double h, t, tlim, tolnl;
Integer exit_status = 0;
Integer iorder = 4;
Integer exno, i, iskip, nmesh, lrwsav;
/* Arrays */
static double ruser[6] = {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0};
double “*rwsav = 0, *yn = 0;
/* NAG types */
Nag_Comm comm;
NagError fail;
Nag_WeightMode wtmode;

INIT_FAIL(fail);
printf("nag_inteq _abel2_weak (d05bdc) Example Program Results\n");

/* For communication with user-supplied functions: */
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comm.user = ruser;

nmesh = pow(2, 6) + 7;

lrwsav = (2 * iorder + 6) * nmesh + 8 * pow(iorder, 2) - 16 * iorder + 1;

if (
(yn = NAG_ALLOC (nmesh, double))

! [
! (rwsav = NAG_ALLOC(lrwsav, double))
)

{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
tolnl = sqgrt(nag_machine_precision);
for (exno = 1; exno <= 2; exno++)
{
printf ("\nExample %"NAG_IFMT"\n\n'", exno);
if (exno==1)
{
tlim = 7.0;
iskip = 5;
h = tlim/(double) (nmesh - 1);
wtmode = Nag_InitWeights;
/*
nag_inteq _abel2_weak (d05bdc).
Nonlinear convolution Volterra-Abel equation, second kind,
weakly singular.
*/
nag_inteq_abel2_weak(ckl, cfl, cgl, wtmode, iorder, tlim, tolnl,
nmesh, yn, rwsav, lrwsav, &comm, &fail);
b
else
{
tlim = 5.0;
iskip = 7;
h = tlim/(double) (nmesh - 1);
wtmode = Nag_ReuseWeights;
/* nag_inteq abel2_weak (d05bdc) as above. */
nag_inteq_abel2_weak(ck2, cf2, cg2, wtmode, iorder, tlim, tolnl,
nmesh, yn, rwsav, lrwsav, &comm, &fail);
b
if (fail.code != NE_NOERROR)
{
printf("Error from nag_inteqg abel2_weak (d05bdc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
¥
printf ("The stepsize h = %8.4f\n\n", h);
printf (" t Approximate\n");
printf (" Solution\n\n");
for (i = 0; i < nmesh; i++)
{
t = (double) (i) * h;
if (i%iskip == 0) printf("%8.4f%15.4f\n", t, ynl[i]l);
¥
}
END:

NAG_FREE (rwsav) ;
NAG_FREE (yn) ;

return exit_status;
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static double NAG_CALL ckl(double t, Nag_Comm *comm)
{

if (comm->user[0] == -1.0)
{
printf (" (User-supplied callback ckl, first invocation.)\n"
comm->user [0] = 0.0;
}

return -sqgrt(nag_pi);
¥
static double NAG_CALL cfl(double t, Nag_Comm *comm)
{

if (comm->user[1l] == -1.0)
{ printf (" (User-supplied callback cfl, first invocation.)\n"
comm->user[1] = 0.0;
reiurn sqrt(t) + (3.0 / 8.0) * nag_pi * pow(t, 2);
;tatic double NAG_CALL cgl(double s, double y, Nag_Comm *comm)
{ if (comm->user[2] == -1.0)
{ printf (" (User-supplied callback cgl, first invocation.)\n"
comm->user [2] = 0.0;
reiurn pow(y, 3);
}

static double NAG_CALL ck2(double t, Nag_Comm *comm)
{

if (comm->user[3] -1.0)
{
printf (" (User-supplied callback ck2,

comm->user [3] 0.0;

first invocation.)\n"

}
return -sqrt(nag_pi);
}
static double NAG_CALL cf2(double t, Nag_Comm *comm)

{

if (comm->user[4]

{

-1.0)

printf (" (User-supplied callback cf2,
comm->user [4] 0.0;

first invocation.)\n"

}

return (3.0 - t) * sqgrt(t);
}
static double NAG_CALL cg2(double s,

{

double y, Nag_Comm *comm)

if (comm->user[5] -1.0)

{

printf (" (User-supplied callback cg2,
comm->user [5] 0.0;

first invocation.)\n"

}

return exp(s * pow(1l.0 - s, 2) - pow(y, 2));

¥
10.2 Program Data

None.

10.3 Program Results

nag_inteqg_abel2_weak (dO5bdc) Example Program Results

Example 1
first invocation.)

first invocation.)
first invocation.)

(User-supplied callback ckl,
(User-supplied callback cfl,
(User-supplied callback cgl,
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The stepsize h = 0.1000

t Approximate

Solution
0.0000 0.0000
0.5000 0.7071
1.0000 1.0000
1.5000 1.2247
2.0000 1.4142
2.5000 1.5811
3.0000 1.7321
3.5000 1.8708
4.0000 2.0000
4.5000 2.1213
5.0000 2.2361
5.5000 2.3452
6.0000 2.4495
6.5000 2.5495
7.0000 2.6458

Example 2

(User-supplied callback ck2, first invocation.)
(User-supplied callback cf2, first invocation.)
(User-supplied callback cg2, first invocation.)

The stepsize h = 0.0714

t Approximate

Solution
0.0000 0.0000
0.5000 0.3536
1.0000 0.0000
1.5000 -0.6124
2.0000 -1.4142
2.5000 -2.3717
3.0000 -3.40641
3.5000 -4.6771
4.0000 -6.0000
4.5000 -7.4246
5.0000 -8.9443
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