
NAG Library Function Document

nag_pde_parab_1d_cd_ode_remesh (d03psc)

1 Purpose

nag_pde_parab_1d_cd_ode_remesh (d03psc) integrates a system of linear or nonlinear convection-
diffusion equations in one space dimension, with optional source terms and scope for coupled ordinary
differential equations (ODEs). The system must be posed in conservative form. This function also
includes the option of automatic adaptive spatial remeshing. Convection terms are discretized using a
sophisticated upwind scheme involving a user-supplied numerical flux function based on the solution of
a Riemann problem at each mesh point. The method of lines is employed to reduce the partial
differential equations (PDEs) to a system of ODEs, and the resulting system is solved using a backward
differentiation formula (BDF) method or a Theta method.

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_cd_ode_remesh (Integer npde, double *ts, double tout,

void (*pdedef)(Integer npde, double t, double x, const double u[],
const double ux[], Integer ncode, const double v[],
const double vdot[], double p[], double c[], double d[],
double s[], Integer *ires, Nag_Comm *comm),

void (*numflx)(Integer npde, double t, double x, Integer ncode,
const double v[], const double uleft[], const double uright[],
double flux[], Integer *ires, Nag_Comm *comm, Nag_D03_Save *saved),

void (*bndary)(Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ncode, const double v[],
const double vdot[], Integer ibnd, double g[], Integer *ires,
Nag_Comm *comm),

void (*uvinit)(Integer npde, Integer npts, Integer nxi,
const double x[], const double xi[], double u[], Integer ncode,
double v[], Nag_Comm *comm),

double u[], Integer npts, double x[], Integer ncode,

void (*odedef)(Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[],
const double ucp[], const double ucpx[], const double ucpt[],
double r[], Integer *ires, Nag_Comm *comm),

Integer nxi, const double xi[], Integer neqn, const double rtol[],
const double atol[], Integer itol, Nag_NormType norm,
Nag_LinAlgOption laopt, const double algopt[], Nag_Boolean remesh,
Integer nxfix, const double xfix[], Integer nrmesh, double dxmesh,
double trmesh, Integer ipminf, double xratio, double con,

void (*monitf)(double t, Integer npts, Integer npde, const double x[],
const double u[], double fmon[], Nag_Comm *comm),

double rsave[], Integer lrsave, Integer isave[], Integer lisave,
Integer itask, Integer itrace, const char *outfile, Integer *ind,
Nag_Comm *comm, Nag_D03_Save *saved, NagError *fail)

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.1

3 Description

nag_pde_parab_1d_cd_ode_remesh (d03psc) integrates the system of convection-diffusion equations in
conservative form:

Xnpde

j¼1

Pi;j
@Uj
@t
þ @Fi
@x
¼ Ci

@Di

@x
þ Si; ð1Þ

or the hyperbolic convection-only system:

@Ui
@t
þ @Fi
@x
¼ 0; ð2Þ

for i ¼ 1; 2; . . . ; npde, a � x � b, t � t0, where the vector U is the set of PDE solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; Unpde x; tð Þ
� �T

:

The optional coupled ODEs are of the general form

Ri t; V ; _V ; �; U�; U�x; U
�
t

� �
¼ 0; i ¼ 1; 2; . . . ; ncode; ð3Þ

where the vector V is the set of ODE solution values

V tð Þ ¼ V1 tð Þ; . . . ; Vncode tð Þ½ �T;
_V denotes its derivative with respect to time, and Ux is the spatial derivative of U .

In (2), Pi;j, Fi and Ci depend on x, t, U and V ; Di depends on x, t, U , Ux and V ; and Si depends on x,

t, U , V and linearly on _V . Note that Pi;j, Fi, Ci and Si must not depend on any space derivatives, and

Pi;j, Fi, Ci and Di must not depend on any time derivatives. In terms of conservation laws, Fi,
Ci@Di

@x
and Si are the convective flux, diffusion and source terms respectively.

In (3), � represents a vector of n� spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to PDE spatial mesh points. U�, U�x and U�t are the functions U ,
Ux and Ut evaluated at these coupling points. Each Ri may depend only linearly on time derivatives.
Hence (3) may be written more precisely as

R ¼ L�M _V �NU�t ; ð4Þ

where R ¼ R1; . . . ; Rncode½ �T, L is a vector of length ncode, M is an ncode by ncode matrix, N is an
ncode by n� � npde

� �
matrix and the entries in L, M and N may depend on t, �, U�, U�x and V . In

practice you only need to supply a vector of information to define the ODEs and not the matrices L, M
and N . (See Section 5 for the specification of odedef.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xnpts

are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xnpts defined initially by you and
(possibly) adapted automatically during the integration according to user-specified criteria.

The initial t ¼ t0ð Þ values of the functions U x; tð Þ and V tð Þ must be specified in uvinit. Note that uvinit
will be called again following any initial remeshing, and so U x; t0ð Þ should be specified for all values of
x in the interval a � x � b, and not just the initial mesh points.

The PDEs are approximated by a system of ODEs in time for the values of Ui at mesh points using a
spatial discretization method similar to the central-difference scheme used in nag_pde_parab_1d_fd
(d03pcc), nag_pde_parab_1d_fd_ode (d03phc) and nag_pde_parab_1d_fd_ode_remesh (d03ppc), but
with the flux Fi replaced by a numerical flux, which is a representation of the flux taking into account the
direction of the flow of information at that point (i.e., the direction of the characteristics). Simple central
differencing of the numerical flux then becomes a sophisticated upwind scheme in which the correct
direction of upwinding is automatically achieved.

The numerical flux, F̂i say, must be calculated by you in terms of the left and right values of the solution
vector U (denoted by UL and UR respectively), at each mid-point of the mesh xj�1

2
¼ xj�1 þ xj

� �
=2 , for

j ¼ 2; 3; . . . ; npts. The left and right values are calculated by nag_pde_parab_1d_cd_ode_remesh

d03psc NAG Library Manual

d03psc.2 Mark 25

(d03psc) from two adjacent mesh points using a standard upwind technique combined with a Van Leer

slope-limiter (see LeVeque (1990)). The physically correct value for F̂i is derived from the solution of
the Riemann problem given by

@Ui
@t
þ @Fi
@y
¼ 0; ð5Þ

where y ¼ x� xj�1
2
, i.e., y ¼ 0 corresponds to x ¼ xj�1

2
, with discontinuous initial values U ¼ UL for

y < 0 and U ¼ UR for y > 0, using an approximate Riemann solver. This applies for either of the systems
(1) or (2); the numerical flux is independent of the functions Pi;j, Ci, Di and Si. A description of several
approximate Riemann solvers can be found in LeVeque (1990) and Berzins et al. (1989). Roe’s scheme
(see Roe (1981)) is perhaps the easiest to understand and use, and a brief summary follows. Consider the
system of PDEs Ut þ Fx ¼ 0 or equivalently Ut þAUx ¼ 0. Provided the system is linear in U , i.e., the

Jacobian matrix A does not depend on U , the numerical flux F̂ is given by

F̂ ¼ 1
2 FL þ FRð Þ � 1

2

Xnpde

k¼1

�k �kj jek; ð6Þ

where FL (FR) is the flux F calculated at the left (right) value of U , denoted by UL (UR); the �k are the
eigenvalues of A; the ek are the right eigenvectors of A; and the �k are defined by

UR � UL ¼
Xnpde

k¼1

�kek: ð7Þ

Examples are given in the documents for nag_pde_parab_1d_cd (d03pfc) and nag_pde_parab_1d_cd_ode
(d03plc).

If the system is nonlinear, Roe’s scheme requires that a linearized Jacobian is found (see Roe (1981)).

The functions Pi;j, Ci, Di and Si (but not Fi) must be specified in pdedef. The numerical flux F̂i must
be supplied in numflx. For problems in the form (2), NULL may be used for pdedef. In this case, a
default function sets the matrix with entries Pi;j to the identity matrix, and the functions Ci, Di and Si to
zero.

For second-order problems, i.e., diffusion terms are present, a boundary condition is required for each
PDE at both boundaries for the problem to be well-posed. If there are no diffusion terms present, then
the continuous PDE problem generally requires exactly one boundary condition for each PDE, that is
npde boundary conditions in total. However, in common with most discretization schemes for first-order
problems, a numerical boundary condition is required at the other boundary for each PDE. In order to be
consistent with the characteristic directions of the PDE system, the numerical boundary conditions must
be derived from the solution inside the domain in some manner (see below). You must supply both types
of boundary conditions, i.e., a total of npde conditions at each boundary point.

The position of each boundary condition should be chosen with care. In simple terms, if information is
flowing into the domain then a physical boundary condition is required at that boundary, and a numerical
boundary condition is required at the other boundary. In many cases the boundary conditions are simple,
e.g., for the linear advection equation. In general you should calculate the characteristics of the PDE
system and specify a physical boundary condition for each of the characteristic variables associated with
incoming characteristics, and a numerical boundary condition for each outgoing characteristic.

A common way of providing numerical boundary conditions is to extrapolate the characteristic variables
from the inside of the domain (note that when using banded matrix algebra the fixed bandwidth means
that only linear extrapolation is allowed, i.e., using information at just two interior points adjacent to the
boundary). For problems in which the solution is known to be uniform (in space) towards a boundary
during the period of integration then extrapolation is unnecessary; the numerical boundary condition can
be supplied as the known solution at the boundary. Another method of supplying numerical boundary
conditions involves the solution of the characteristic equations associated with the outgoing
characteristics. Examples of both methods can be found in the documents for nag_pde_parab_1d_cd
(d03pfc) and nag_pde_parab_1d_cd_ode (d03plc).

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.3

The boundary conditions must be specified in bndary in the form

GL
i x; t; U; V ; _V
� �

¼ 0 at x ¼ a; i ¼ 1; 2; . . . ;npde; ð8Þ

at the left-hand boundary, and

GR
i x; t; U; V ; _V
� �

¼ 0 at x ¼ b; i ¼ 1; 2; . . . ;npde; ð9Þ

at the right-hand boundary.

Note that spatial derivatives at the boundary are not passed explicitly to bndary, but they can be
calculated using values of U at and adjacent to the boundaries if required. However, it should be noted
that instabilities may occur if such one-sided differencing opposes the characteristic direction at the
boundary.

The algebraic-differential equation system which is defined by the functions Ri must be specified in
odedef. You must also specify the coupling points � (if any) in the array xi.

In total there are npde� nptsþ ncode ODEs in the time direction. This system is then integrated
forwards in time using a BDF or Theta method, optionally switching between Newton’s method and
functional iteration (see Berzins et al. (1989) and the references therein).

The adaptive space remeshing can be used to generate meshes that automatically follow the changing
time-dependent nature of the solution, generally resulting in a more efficient and accurate solution using
fewer mesh points than may be necessary with a fixed uniform or non-uniform mesh. Problems with
travelling wavefronts or variable-width boundary layers for example will benefit from using a moving
adaptive mesh. The discrete time-step method used here (developed by Furzeland (1984)) automatically
creates a new mesh based on the current solution profile at certain time-steps, and the solution is then
interpolated onto the new mesh and the integration continues.

The method requires you to supply a monitf which specifies in an analytical or numerical form the
particular aspect of the solution behaviour you wish to track. This so-called monitor function is used by
the function to choose a mesh which equally distributes the integral of the monitor function over the
domain. A typical choice of monitor function is the second space derivative of the solution value at each
point (or some combination of the second space derivatives if there is more than one solution
component), which results in refinement in regions where the solution gradient is changing most rapidly.

You must specify the frequency of mesh updates together with certain other criteria such as adjacent
mesh ratios. Remeshing can be expensive and you are encouraged to experiment with the different
options in order to achieve an efficient solution which adequately tracks the desired features of the
solution.

Note that unless the monitor function for the initial solution values is zero at all user-specified initial
mesh points, a new initial mesh is calculated and adopted according to the user-specified remeshing
criteria. uvinit will then be called again to determine the initial solution values at the new mesh points
(there is no interpolation at this stage) and the integration proceeds.

The problem is subject to the following restrictions:

(i) In (1), _Vj tð Þ, for j ¼ 1; 2; . . . ; ncode, may only appear linearly in the functions Si, for
i ¼ 1; 2; . . . ; npde, with a similar restriction for GL

i and GR
i ;

(ii) Pi;j, Fi, Ci and Si must not depend on any space derivatives; and Pi;j, Ci, Di and Fi must not
depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) The evaluation of the terms Pi;j, Ci, Di and Si is done by calling the pdedef at a point
approximately midway between each pair of mesh points in turn. Any discontinuities in these
functions must therefore be at one or more of the fixed mesh points specified by xfix;

(v) At least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
PDE problem.

For further details of the scheme, see Pennington and Berzins (1994) and the references therein.

d03psc NAG Library Manual

d03psc.4 Mark 25

4 References

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Furzeland R M (1984) The construction of adaptive space meshes TNER.85.022 Thornton Research
Centre, Chester

Hirsch C (1990) Numerical Computation of Internal and External Flows, Volume 2: Computational
Methods for Inviscid and Viscous Flows John Wiley

LeVeque R J (1990) Numerical Methods for Conservation Laws Birkhäuser Verlag

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99

Roe P L (1981) Approximate Riemann solvers, parameter vectors, and difference schemes J. Comput.
Phys. 43 357–372

5 Arguments

1: npde – Integer Input

On entry: the number of PDEs to be solved.

Constraint: npde � 1.

2: ts – double * Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in u. Normally ts ¼ tout.

Constraint: ts < tout.

3: tout – double Input

On entry: the final value of t to which the integration is to be carried out.

4: pdedef – function, supplied by the user External Function

pdedef must evaluate the functions Pi;j, Ci, Di and Si which partially define the system of PDEs.
Pi;j and Ci may depend on x, t, U and V ; Di may depend on x, t, U , Ux and V ; and Si may

depend on x, t, U , V and linearly on _V . pdedef is called approximately midway between each
pair of mesh points in turn by nag_pde_parab_1d_cd_ode_remesh (d03psc). The argument may be
specified as NULL for problems in the form (2).

The specification of pdedef is:

void pdedef (Integer npde, double t, double x, const double u[],
const double ux[], Integer ncode, const double v[],
const double vdot[], double p[], double c[], double d[],
double s[], Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.5

4: u½npde� – const double Input

On entry: u½i � 1� contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ; npde.

5: ux½npde� – const double Input

On entry: ux½i � 1� contains the value of the component
@Ui x; tð Þ
@x

, for

i ¼ 1; 2; . . . ;npde.

6: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

7: v½ncode� – const double Input

On entry: if ncode > 0, v½i � 1� contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;ncode.

8: vdot½ncode� – const double Input

On entry: if ncode > 0, vdot½i � 1� contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;ncode.

Note: _Vi tð Þ, for i ¼ 1; 2; . . . ; ncode, may only appear linearly in Sj , for
j ¼ 1; 2; . . . ; npde.

9: p½npde� npde� – double Output

On exit: p½npde� j � 1ð Þ þ i � 1� must be set to the value of Pi;j x; t; U; Vð Þ, for
i ¼ 1; 2; . . . ;npde and j ¼ 1; 2; . . . ; npde.

10: c½npde� – double Output

On exit: c½i � 1� must be set to the value of Ci x; t; U; Vð Þ, for i ¼ 1; 2; . . . ;npde.

11: d½npde� – double Output

On exit: d½i � 1� must be set to the value of Di x; t; U; Ux; Vð Þ, for i ¼ 1; 2; . . . ;npde.

12: s½npde� – double Output

On exit: s½i � 1� must be set to the value of Si x; t; U; V ; _V
� �

, for i ¼ 1; 2; . . . ;npde.

13: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail:code ¼ NE_USER_STOP.

ires ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_cd_ode_remesh (d03psc) returns to the calling
function with the error indicator set to fail:code ¼ NE_FAILED_DERIV.

d03psc NAG Library Manual

d03psc.6 Mark 25

14: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to pdedef.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling
nag_pde_parab_1d_cd_ode_remesh (d03psc) you may allocate memory and
initialize these pointers with various quantities for use by pdedef when called
from nag_pde_parab_1d_cd_ode_remesh (d03psc) (see Section 3.2.1.1 in the
Essential Introduction).

5: numflx – function, supplied by the user External Function

numflx must supply the numerical flux for each PDE given the left and right values of the solution
vector u. numflx is called approximately midway between each pair of mesh points in turn by
nag_pde_parab_1d_cd_ode_remesh (d03psc).

The specification of numflx is:

void numflx (Integer npde, double t, double x, Integer ncode,
const double v[], const double uleft[], const double uright[],
double flux[], Integer *ires, Nag_Comm *comm,
Nag_D03_Save *saved)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

4: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

5: v½ncode� – const double Input

On entry: if ncode > 0, v½i � 1� contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;ncode.

6: uleft½npde� – const double Input

On entry: uleft½i � 1� contains the left value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ;npde.

7: uright½npde� – const double Input

On entry: uright½i � 1� contains the right value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ;npde.

8: flux½npde� – double Output

On exit: flux½i � 1� must be set to the numerical flux F̂i, for i ¼ 1; 2; . . . ; npde.

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.7

9: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail:code ¼ NE_USER_STOP.

ires ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_cd_ode_remesh (d03psc) returns to the calling
function with the error indicator set to fail:code ¼ NE_FAILED_DERIV.

10: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to numflx.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling
nag_pde_parab_1d_cd_ode_remesh (d03psc) you may allocate memory and
initialize these pointers with various quantities for use by numflx when called
from nag_pde_parab_1d_cd_ode_remesh (d03psc) (see Section 3.2.1.1 in the
Essential Introduction).

11: saved – Nag_D03_Save * Communication Structure

If numflx calls one of the approximate Riemann solvers nag_pde_parab_1d_euler_roe
(d03puc), nag_pde_parab_1d_euler_osher (d03pvc), nag_pde_parab_1d_euler_hll
(d03pwc) or nag_pde_parab_1d_euler_exact (d03pxc) then saved is used to pass data
concerning the computation to the solver. You should not change the components of
saved.

6: bndary – function, supplied by the user External Function

bndary must evaluate the functions GL
i and GR

i which describe the physical and numerical
boundary conditions, as given by (8) and (9).

The specification of bndary is:

void bndary (Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ncode, const double v[],
const double vdot[], Integer ibnd, double g[], Integer *ires,
Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.

3: t – double Input

On entry: the current value of the independent variable t.

d03psc NAG Library Manual

d03psc.8 Mark 25

4: x½npts� – const double Input

On entry: the mesh points in the spatial direction. x½0� corresponds to the left-hand
boundary, a, and x½npts� 1� corresponds to the right-hand boundary, b.

5: u½npde� npts� – const double Input

On entry: u½npde� j � 1ð Þ þ i � 1� contains the value of the component Ui x; tð Þ at
x ¼ x½j � 1�, for i ¼ 1; 2; . . . ;npde and j ¼ 1; 2; . . . ; npts.

Note: if banded matrix algebra is to be used then the functions GL
i and GR

i may depend
on the value of Ui x; tð Þ at the boundary point and the two adjacent points only.

6: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

7: v½ncode� – const double Input

On entry: if ncode > 0, v½i � 1� contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;ncode.

8: vdot½ncode� – const double Input

On entry: if ncode > 0, vdot½i � 1� contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;ncode.

Note: _Vi tð Þ, for i ¼ 1; 2; . . . ;ncode, may only appear linearly in GL
j and GR

j , for

j ¼ 1; 2; . . . ; npde.

9: ibnd – Integer Input

On entry: specifies which boundary conditions are to be evaluated.

ibnd ¼ 0
bndary must evaluate the left-hand boundary condition at x ¼ a.

ibnd 6¼ 0
bndary must evaluate the right-hand boundary condition at x ¼ b.

10: g½npde� – double Output

On exit: g½i � 1� must contain the ith component of either GL
i or GR

i in (8) and (9),
depending on the value of ibnd, for i ¼ 1; 2; . . . ; npde.

11: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail:code ¼ NE_USER_STOP.

ires ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_cd_ode_remesh (d03psc) returns to the calling
function with the error indicator set to fail:code ¼ NE_FAILED_DERIV.

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.9

12: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to bndary.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling
nag_pde_parab_1d_cd_ode_remesh (d03psc) you may allocate memory and
initialize these pointers with various quantities for use by bndary when called
from nag_pde_parab_1d_cd_ode_remesh (d03psc) (see Section 3.2.1.1 in the
Essential Introduction).

7: uvinit – function, supplied by the user External Function

uvinit must supply the initial t ¼ t0ð Þ values of U x; tð Þ and V tð Þ for all values of x in the interval
a � x � b.

The specification of uvinit is:

void uvinit (Integer npde, Integer npts, Integer nxi,
const double x[], const double xi[], double u[], Integer ncode,
double v[], Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: npts – Integer Input

On entry: the number of mesh points in the interval [a; b].

3: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.

4: x½npts� – const double Input

On entry: the current mesh. x½i � 1� contains the value of xi, for i ¼ 1; 2; . . . ;npts.

5: xi½nxi� – const double Input

On entry: if nxi > 0, xi½i � 1� contains the ODE/PDE coupling point, �i, for
i ¼ 1; 2; . . . ;nxi.

6: u½npde� npts� – double Output

On exit: if nxi > 0, u½npde� j � 1ð Þ þ i � 1� contains the value of the component
Ui xj ; t0
� �

, for i ¼ 1; 2; . . . ; npde and j ¼ 1; 2; . . . ;npts.

7: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

8: v½ncode� – double Output

On exit: if ncode > 0, v½i � 1� must contain the value of component Vi t0ð Þ, for
i ¼ 1; 2; . . . ;ncode.

9: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to uvinit.

d03psc NAG Library Manual

d03psc.10 Mark 25

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling
nag_pde_parab_1d_cd_ode_remesh (d03psc) you may allocate memory and
initialize these pointers with various quantities for use by uvinit when called from
nag_pde_parab_1d_cd_ode_remesh (d03psc) (see Section 3.2.1.1 in the Essential
Introduction).

8: u½neqn� – double Input/Output

On entry: if ind ¼ 1 the value of u must be unchanged from the previous call.

On exit: u½npde� j � 1ð Þ þ i � 1� contains the computed solution Ui xj ; t
� �

, for i ¼ 1; 2; . . . ; npde
and j ¼ 1; 2; . . . ; npts, and u½npts� npdeþ k � 1� contains Vk tð Þ, for k ¼ 1; 2; . . . ; ncode, all
evaluated at t ¼ ts.

9: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: npts � 3.

10: x½npts� – double Input/Output

On entry: the mesh points in the space direction. x½0� must specify the left-hand boundary, a, and
x½npts� 1� must specify the right-hand boundary, b.

Constraint: x½0� < x½1� < � � � < x½npts� 1�.
On exit: the final values of the mesh points.

11: ncode – Integer Input

On entry: the number of coupled ODE components.

Constraint: ncode � 0.

12: odedef – function, supplied by the user External Function

odedef must evaluate the functions R, which define the system of ODEs, as given in (4).

odedef will never be called and the NAG defined null void function pointer, NULLFN, can be
supplied in the call to nag_pde_parab_1d_cd_ode_remesh (d03psc).

The specification of odedef is:

void odedef (Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[],
const double ucp[], const double ucpx[], const double ucpt[],
double r[], Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.11

4: v½ncode� – const double Input

On entry: if ncode > 0, v½i � 1� contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ;ncode.

5: vdot½ncode� – const double Input

On entry: if ncode > 0, vdot½i � 1� contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ;ncode.

6: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.

7: xi½nxi� – const double Input

On entry: if nxi > 0, xi½i � 1� contains the ODE/PDE coupling point, �i, for
i ¼ 1; 2; . . . ;nxi.

8: ucp½npde� nxi� – const double Input

On entry: if nxi > 0, ucp½npde� j � 1ð Þ þ i � 1� contains the value of Ui x; tð Þ at the
coupling point x ¼ �j , for i ¼ 1; 2; . . . ; npde and j ¼ 1; 2; . . . ; nxi.

9: ucpx½npde� nxi� – const double Input

On entry: if nxi > 0, ucpx½npde� j � 1ð Þ þ i � 1� contains the value of
@Ui x; tð Þ
@x

at the

coupling point x ¼ �j , for i ¼ 1; 2; . . . ; npde and j ¼ 1; 2; . . . ; nxi.

10: ucpt½npde� nxi� – const double Input

On entry: if nxi > 0, ucpt½npde� j � 1ð Þ þ i � 1� contains the value of
@Ui

@t
at the

coupling point x ¼ �j , for i ¼ 1; 2; . . . ; npde and j ¼ 1; 2; . . . ; nxi.

11: r½ncode� – double Output

On exit: r½i � 1� must contain the ith component of R, for i ¼ 1; 2; . . . ;ncode, where R
is defined as

R ¼ L�M _V �NU�t ; ð10Þ

or

R ¼ �M _V �NU�t : ð11Þ

The definition of R is determined by the input value of ires.

12: ires – Integer * Input/Output

On entry: the form of R that must be returned in the array r.

ires ¼ 1
Equation (10) must be used.

ires ¼ �1
Equation (11) must be used.

On exit: should usually remain unchanged. However, you may reset ires to force the
integration function to take certain actions, as described below:

ires ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail:code ¼ NE_USER_STOP.

d03psc NAG Library Manual

d03psc.12 Mark 25

ires ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_cd_ode_remesh (d03psc) returns to the calling
function with the error indicator set to fail:code ¼ NE_FAILED_DERIV.

13: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to odedef.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling
nag_pde_parab_1d_cd_ode_remesh (d03psc) you may allocate memory and
initialize these pointers with various quantities for use by odedef when called
from nag_pde_parab_1d_cd_ode_remesh (d03psc) (see Section 3.2.1.1 in the
Essential Introduction).

13: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if ncode ¼ 0, nxi ¼ 0;
if ncode > 0, nxi � 0.

14: xi½nxi� – const double Input

On entry: if nxi > 0, xi½i � 1�, for i ¼ 1; 2; . . . ;nxi, must be set to the ODE/PDE coupling points.

Constraint: x½0� � xi½0� < xi½1� < � � � < xi½nxi� 1� � x½npts� 1�.

15: neqn – Integer Input

On entry: the number of ODEs in the time direction.

Constraint: neqn ¼ npde� nptsþ ncode.

16: rtol½dim� – const double Input

Note: the dimension, dim, of the array rtol must be at least

1 when itol ¼ 1 or 2;
neqn when itol ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: rtol½i� 1� � 0:0 for all relevant i.

17: atol½dim� – const double Input

Note: the dimension, dim, of the array atol must be at least

1 when itol ¼ 1 or 3;
neqn when itol ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: atol½i� 1� � 0:0 for all relevant i.

Note: corresponding elements of rtol and atol cannot both be 0:0.

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.13

18: itol – Integer Input

On entry: a value to indicate the form of the local error test. If ei is the estimated local error for
u½i � 1�, for i ¼ 1; 2; . . . ;neqn, and k k, denotes the norm, then the error test to be satisfied is
eik k < 1:0. itol indicates to nag_pde_parab_1d_cd_ode_remesh (d03psc) whether to interpret

either or both of rtol and atol as a vector or scalar in the formation of the weights wi used in the
calculation of the norm (see the description of norm):

itol rtol atol wi

1 scalar scalar rtol½0� � u½i � 1�j j þ atol½0�
2 scalar vector rtol½0� � u½i � 1�j j þ atol½i � 1�
3 vector scalar rtol½i � 1� � u½i � 1�j j þ atol½0�
4 vector vector rtol½i � 1� � u½i � 1�j j þ atol½i � 1�

Constraint: itol ¼ 1, 2, 3 or 4.

19: norm – Nag_NormType Input

On entry: the type of norm to be used.

norm ¼ Nag OneNorm
Averaged L1 norm.

norm ¼ Nag TwoNorm
Averaged L2 norm.

If Unorm denotes the norm of the vector u of length neqn, then for the averaged L1 norm

Unorm ¼
1

neqn

Xneqn

i¼1

u½i� 1�=wi;

and for the averaged L2 norm

Unorm ¼

ffi
1

neqn

Xneqn

i¼1

u½i� 1�=wið Þ2
vuut ;

See the description of itol for the formulation of the weight vector w.

Constraint: norm ¼ Nag OneNorm or Nag TwoNorm.

20: laopt – Nag_LinAlgOption Input

On entry: the type of matrix algebra required.

laopt ¼ Nag LinAlgFull
Full matrix methods to be used.

laopt ¼ Nag LinAlgBand
Banded matrix methods to be used.

laopt ¼ Nag LinAlgSparse
Sparse matrix methods to be used.

Constraint: laopt ¼ Nag LinAlgFull, Nag LinAlgBand or Nag LinAlgSparse.

Note: you are recommended to use the banded option when no coupled ODEs are present
(ncode ¼ 0). Also, the banded option should not be used if the boundary conditions involve
solution components at points other than the boundary and the immediately adjacent two points.

21: algopt½30� – const double Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then algopt½0� should be set to 0:0. Default values will also be used for any

d03psc NAG Library Manual

d03psc.14 Mark 25

other elements of algopt set to zero. The permissible values, default values, and meanings are as
follows:

algopt½0�
Selects the ODE integration method to be used. If algopt½0� ¼ 1:0, a BDF method is used
and if algopt½0� ¼ 2:0, a Theta method is used. The default is algopt½0� ¼ 1:0.

If algopt½0� ¼ 2:0, then algopt½i � 1�, for i ¼ 2; 3; 4, are not used.

algopt½1�
Specifies the maximum order of the BDF integration formula to be used. algopt½1� may be
1:0, 2:0, 3:0, 4:0 or 5:0. The default value is algopt½1� ¼ 5:0.

algopt½2�
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If algopt½2� ¼ 1:0 a modified Newton iteration is used and if
algopt½2� ¼ 2:0 a functional iteration method is used. If functional iteration is selected and
the integrator encounters difficulty, then there is an automatic switch to the modified
Newton iteration. The default value is algopt½2� ¼ 1:0.

algopt½3�
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as

Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ;npde, for some i or when there is no _Vi tð Þ dependence in the
coupled ODE system. If algopt½3� ¼ 1:0, then the Petzold test is used. If algopt½3� ¼ 2:0,
then the Petzold test is not used. The default value is algopt½3� ¼ 1:0.

If algopt½0� ¼ 1:0, then algopt½i � 1�, for i ¼ 5; 6; 7, are not used.

algopt½4�
Specifies the value of Theta to be used in the Theta integration method.
0:51 � algopt½4� � 0:99. The default value is algopt½4� ¼ 0:55.

algopt½5�
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If algopt½5� ¼ 1:0, a modified Newton iteration is used and
if algopt½5� ¼ 2:0, a functional iteration method is used. The default value is
algopt½5� ¼ 1:0.

algopt½6�
Specifies whether or not the integrator is allowed to switch automatically between modified
Newton and functional iteration methods in order to be more efficient. If algopt½6� ¼ 1:0,
then switching is allowed and if algopt½6� ¼ 2:0, then switching is not allowed. The default
value is algopt½6� ¼ 1:0.

algopt½10�
Specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the argument itask. If algopt½0� 6¼ 0:0, a value
of 0:0 for algopt½10�, say, should be specified even if itask subsequently specifies that tcrit

will not be used.

algopt½11�
Specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, algopt½11� should be set to 0:0.

algopt½12�
Specifies the maximum absolute step size to be allowed in the time integration. If this
option is not required, algopt½12� should be set to 0:0.

algopt½13�
Specifies the initial step size to be attempted by the integrator. If algopt½13� ¼ 0:0, then the
initial step size is calculated internally.

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.15

algopt½14�
Specifies the maximum number of steps to be attempted by the integrator in any one call. If
algopt½14� ¼ 0:0, then no limit is imposed.

algopt½22�
Specifies what method is to be used to solve the nonlinear equations at the initial point to

initialize the values of U , Ut, V and _V . If algopt½22� ¼ 1:0, a modified Newton iteration is
used and if algopt½22� ¼ 2:0, functional iteration is used. The default value is
algopt½22� ¼ 1:0.

algopt½28� and algopt½29� are used only for the sparse matrix algebra option, i.e.,
laopt ¼ Nag LinAlgSparse.

algopt½28�
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0:0 < algopt½28� < 1:0, with smaller values biasing the algorithm
towards maintaining sparsity at the expense of numerical stability. If algopt½28� lies outside
the range then the default value is used. If the functions regard the Jacobian matrix as
numerically singular, then increasing algopt½28� towards 1:0 may help, but at the cost of
increased fill-in. The default value is algopt½28� ¼ 0:1.

algopt½29�
Used as the relative pivot threshold during subsequent Jacobian decompositions (see
algopt½28�) below which an internal error is invoked. algopt½29� must be greater than zero,
otherwise the default value is used. If algopt½29� is greater than 1:0 no check is made on
the pivot size, and this may be a necessary option if the Jacobian matrix is found to be
numerically singular (see algopt½28�). The default value is algopt½29� ¼ 0:0001.

22: remesh – Nag_Boolean Input

On entry: indicates whether or not spatial remeshing should be performed.

remesh ¼ Nag TRUE
Indicates that spatial remeshing should be performed as specified.

remesh ¼ Nag FALSE
Indicates that spatial remeshing should be suppressed.

N o t e : r e m e s h s h o u l d n o t b e c h a n g e d b e t w e e n c o n s e c u t i v e c a l l s t o
nag_pde_parab_1d_cd_ode_remesh (d03psc). Remeshing can be switched off or on at specified
times by using appropriate values for the arguments nrmesh and trmesh at each call.

23: nxfix – Integer Input

On entry: the number of fixed mesh points.

Constraint: 0 � nxfix � npts� 2.

Note: the end points x½0� and x½npts� 1� are fixed automatically and hence should not be
specified as fixed points.

24: xfix½dim� – const double Input

Note: the dimension, dim, of the array xfix must be at least max 1;nxfixð Þ.
On entry: xfix½i � 1�, for i ¼ 1; 2; . . . ; nxfix, must contain the value of the x coordinate at the ith
fixed mesh point.

Constraints:

xfix½i � 1� < xfix½i�, for i ¼ 1; 2; . . . ;nxfix� 1;
each fixed mesh point must coincide with a user-supplied initial mesh point, that is
xfix½i � 1� ¼ x½j � 1� for some j, 2 � j � npts� 1..

Note: the positions of the fixed mesh points in the array x½npts� 1� remain fixed during
remeshing, and so the number of mesh points between adjacent fixed points (or between fixed

d03psc NAG Library Manual

d03psc.16 Mark 25

points and end points) does not change. You should take this into account when choosing the
initial mesh distribution.

25: nrmesh – Integer Input

On entry: specifies the spatial remeshing frequency and criteria for the calculation and adoption of
a new mesh.

nrmesh < 0
Indicates that a new mesh is adopted according to the argument dxmesh. The mesh is tested
every nrmeshj j timesteps.

nrmesh ¼ 0
Indicates that remeshing should take place just once at the end of the first time step reached
when t > trmesh.

nrmesh > 0
Indicates that remeshing will take place every nrmesh time steps, with no testing using
dxmesh.

Note: nrmesh may be changed between consecutive calls to nag_pde_parab_1d_cd_ode_remesh
(d03psc) to give greater flexibility over the times of remeshing.

26: dxmesh – double Input

On entry: determines whether a new mesh is adopted when nrmesh is set less than zero. A
possible new mesh is calculated at the end of every nrmeshj j time steps, but is adopted only if

xnew
i > xold

i þ dxmesh� xold
iþ1 � xold

i

� �
or

xnew
i < xold

i � dxmesh� xold
i � xold

i�1

� �
dxmesh thus imposes a lower limit on the difference between one mesh and the next.

Constraint: dxmesh � 0:0.

27: trmesh – double Input

On entry: specifies when remeshing will take place when nrmesh is set to zero. Remeshing will
occur just once at the end of the first time step reached when t is greater than trmesh.

Note: trmesh may be changed between consecutive calls to nag_pde_parab_1d_cd_ode_remesh
(d03psc) to force remeshing at several specified times.

28: ipminf – Integer Input

On entry: the level of trace information regarding the adaptive remeshing.

ipminf ¼ 0
No trace information.

ipminf ¼ 1
Brief summary of mesh characteristics.

ipminf ¼ 2
More detailed information, including old and new mesh points, mesh sizes and monitor
function values.

Constraint: ipminf ¼ 0, 1 or 2.

29: xratio – double Input

On entry: an input bound on the adjacent mesh ratio (greater than 1:0 and typically in the range
1:5 to 3:0). The remeshing functions will attempt to ensure that

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.17

xi � xi�1ð Þ=xratio < xiþ1 � xi < xratio� xi � xi�1ð Þ:
Suggested value: xratio ¼ 1:5.

Constraint: xratio > 1:0.

30: con – double Input

On entry: an input bound on the sub-integral of the monitor function Fmon xð Þ over each space
step. The remeshing functions will attempt to ensure thatZ xiþ1

xi

Fmon xð Þ dx � con

Z xnpts

x1

Fmon xð Þ dx;

(see Furzeland (1984)). con gives you more control over the mesh distribution, e.g., decreasing
con allows more clustering. A typical value is 2:0= npts� 1ð Þ, but you are encouraged to
experiment with different values. Its value is not critical and the mesh should be qualitatively
correct for all values in the range given below.

Suggested value: con ¼ 2:0= npts� 1ð Þ.
Constraint: 0:1= npts� 1ð Þ � con � 10:0= npts� 1ð Þ.

31: monitf – function, supplied by the user External Function

monitf must supply and evaluate a remesh monitor function to indicate the solution behaviour of
interest.

monitf will never be called and the NAG defined null void function pointer, NULLFN, can be
supplied in the call to nag_pde_parab_1d_cd_ode_remesh (d03psc).

The specification of monitf is:

void monitf (double t, Integer npts, Integer npde, const double x[],
const double u[], double fmon[], Nag_Comm *comm)

1: t – double Input

On entry: the current value of the independent variable t.

2: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.

3: npde – Integer Input

On entry: the number of PDEs in the system.

4: x½npts� – const double Input

On entry: the current mesh. x½i � 1� contains the value of xi, for i ¼ 1; 2; . . . ;npts.

5: u½npde� npts� – const double Input

On entry: u½npde� j � 1ð Þ þ i � 1� contains the value of Ui x; tð Þ at x ¼ x½j � 1� and
time t, for i ¼ 1; 2; . . . ; npde and j ¼ 1; 2; . . . ; npts.

6: fmon½npts� – double Output

On exit: fmon½i� 1� must contain the value of the monitor function Fmon xð Þ at mesh
point x ¼ x½i� 1�.
Constraint: fmon½i� 1� � 0:0.

d03psc NAG Library Manual

d03psc.18 Mark 25

7: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to monitf.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling
nag_pde_parab_1d_cd_ode_remesh (d03psc) you may allocate memory and
initialize these pointers with various quantities for use by monitf when called
from nag_pde_parab_1d_cd_ode_remesh (d03psc) (see Section 3.2.1.1 in the
Essential Introduction).

32: rsave½lrsave� – double Communication Array

If ind ¼ 0, rsave need not be set on entry.

If ind ¼ 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

33: lrsave – Integer Input

On entry: the dimension of the array rsave. Its size depends on the type of matrix algebra selected.

If laopt ¼ Nag LinAlgFull, lrsave � neqn� neqnþ neqnþ nwkres þ lenode.

If laopt ¼ Nag LinAlgBand, lrsave � 3�mlu þ 1ð Þ � neqnþ nwkres þ lenode.

If laopt ¼ Nag LinAlgSparse, lrsave � 4� neqnþ 11� neqn=2þ 1þ nwkres þ lenode.

Where

mlu is the lower or upper half bandwidths such that
mlu ¼ 3� npde� 1, for PDE problems only (no coupled ODEs); or
mlu ¼ neqn� 1, for coupled PDE/ODE problems.

nwkres ¼
npde � 2� nptsþ 6� nxiþ 3� npde þ 26ð Þ þ nxiþ ncodeþ 7� nptsþ nxfixþ 1; when ncode > 0 and nxi > 0; or
npde � 2� nptsþ 3� npdeþ 32ð Þ þ ncodeþ 7� nptsþ nxfixþ 2; when ncode > 0 and nxi ¼ 0; or
npde � 2� nptsþ 3� npdeþ 32ð Þ þ 7� nptsþ nxfixþ 3; when ncode ¼ 0:

8<
:

lenode ¼ 6þ int algopt½1�ð Þð Þ � neqnþ 50; when the BDF method is used; or
9� neqnþ 50; when the Theta method is used:

�

Note: when laopt ¼ Nag LinAlgSparse, the value of lrsave may be too small when supplied to
the integrator. An estimate of the minimum size of lrsave is printed on the current error message
unit if itrace > 0 and the function returns with fail:code ¼ NE_INT_2.

34: isave½lisave� – Integer Communication Array

If ind ¼ 0, isave need not be set.

If ind ¼ 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration. In particular the following components of the array isave
concern the efficiency of the integration:

isave½0�
Contains the number of steps taken in time.

isave½1�
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave½2�
Contains the number of Jacobian evaluations performed by the time integrator.

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.19

isave½3�
Contains the order of the BDF method last used in the time integration, if applicable. When
the Theta method is used, isave½3� contains no useful information.

isave½4�
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

35: lisave – Integer Input

On entry: the dimension of the array isave. Its size depends on the type of matrix algebra selected:

if laopt ¼ Nag LinAlgFull, lisave � 25;

if laopt ¼ Nag LinAlgBand, lisave � neqnþ nxfixþ 25;

if laopt ¼ Nag LinAlgSparse, lisave � 25� neqnþ nxfixþ 25.

Note: when using the sparse option, the value of lisave may be too small when supplied to the
integrator. An estimate of the minimum size of lisave is printed if itrace > 0 and the function
returns with fail:code ¼ NE_INT_2.

36: itask – Integer Input

On entry: the task to be performed by the ODE integrator.

itask ¼ 1
Normal computation of output values u at t ¼ tout (by overshooting and interpolating).

itask ¼ 2
Take one step in the time direction and return.

itask ¼ 3
Stop at first internal integration point at or beyond t ¼ tout.

itask ¼ 4
Normal computation of output values u at t ¼ tout but without overshooting t ¼ tcrit where
tcrit is described under the argument algopt.

itask ¼ 5
Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the argument algopt.

Constraint: itask ¼ 1, 2, 3, 4 or 5.

37: itrace – Integer Input

On entry: the level of trace information required from nag_pde_parab_1d_cd_ode_remesh
(d03psc) and the underlying ODE solver. itrace may take the value �1, 0, 1, 2 or 3.

itrace ¼ �1
No output is generated.

itrace ¼ 0
Only warning messages from the PDE solver are printed.

itrace > 0
Output from the underlying ODE solver is printed . This output contains details of Jacobian
entries, the nonlinear iteration and the time integration during the computation of the ODE
system.

If itrace < �1, then �1 is assumed and similarly if itrace > 3, then 3 is assumed.

The advisory messages are given in greater detail as itrace increases.

d03psc NAG Library Manual

d03psc.20 Mark 25

38: outfile – const char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

39: ind – Integer * Input/Output

On entry: indicates whether this is a continuation call or a new integration.

ind ¼ 0
Starts or restarts the integration in time.

ind ¼ 1
Continues the integration after an earlier exit from the function. In this case, only the
arguments tout, fail, nrmesh and trmesh may be reset between calls to
nag_pde_parab_1d_cd_ode_remesh (d03psc).

Constraint: ind ¼ 0 or 1.

On exit: ind ¼ 1.

40: comm – Nag_Comm *

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

41: saved – Nag_D03_Save * Communication Structure

saved must remain unchanged following a previous call to a Chapter d03 function and prior to
any subsequent call to a Chapter d03 function.

42: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but small changes in atol or rtol are unlikely to result in a changed
solution.

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_MONIT

fmon is negative at one or more mesh points, or zero mesh spacing has been obtained due to a
poor monitor function.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires ¼ 3 in pdedef, numflx, bndary or odedef.

NE_FAILED_START

atol and rtol were too small to start integration.

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.21

NE_FAILED_STEP

Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far
as ts: ts ¼ valueh i.
Underlying ODE solver cannot make further progress from the point ts with the supplied values of
atol and rtol. ts ¼ valueh i.

NE_INCOMPAT_PARAM

On entry, con ¼ valueh i, npts ¼ valueh i.
Constraint: con � 10:0= npts� 1ð Þ.
On entry, con ¼ valueh i, npts ¼ valueh i.
Constraint: con � 0:1= npts� 1ð Þ.
On entry, the point xfix½I � 1� does not coincide with any x½J � 1�: I ¼ valueh i and
xfix½I � 1� ¼ valueh i.

NE_INT

ires set to an invalid value in a call to user-supplied functions pdedef, numflx, bndary or odedef.

On entry, ind ¼ valueh i.
Constraint: ind ¼ 0 or 1.

On entry, ipminf ¼ valueh i.
Constraint: ipminf ¼ 0, 1 or 2.

On entry, itask ¼ valueh i.
Constraint: itask ¼ 1, 2, 3, 4 or 5.

On entry, itol ¼ valueh i.
Constraint: itol ¼ 1, 2, 3 or 4.

On entry, ncode ¼ valueh i.
Constraint: ncode � 0.

On entry, npde ¼ valueh i.
Constraint: npde � 1.

On entry, npts ¼ valueh i.
Constraint: npts � 3.

On entry, nxfix ¼ valueh i.
Constraint: nxfix � 0.

NE_INT_2

On entry, corresponding elements atol½I � 1� and rtol½J � 1� are both zero: I ¼ valueh i and
J ¼ valueh i.
On entry, lisave is too small: lisave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, lrsave is too small: lrsave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, ncode ¼ valueh i and nxi ¼ valueh i.
Constraint: nxi ¼ 0 when ncode ¼ 0.

On entry, ncode ¼ valueh i and nxi ¼ valueh i.
Constraint: nxi � 0 when ncode > 0.

On entry, nxfix ¼ valueh i, npts ¼ valueh i.
Constraint: nxfix � npts� 2.

When using the sparse option lisave or lrsave is too small: lisave ¼ valueh i, lrsave ¼ valueh i.

d03psc NAG Library Manual

d03psc.22 Mark 25

NE_INT_4

On entry, neqn ¼ valueh i, npde ¼ valueh i, npts ¼ valueh i and ncode ¼ valueh i.
Constraint: neqn ¼ npde� nptsþ ncode.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_ITER_FAIL

In solving ODE system, the maximum number of steps algopt½14� has been exceeded.
algopt½14� ¼ valueh i.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_NOT_CLOSE_FILE

Cannot close file valueh i.

NE_NOT_STRICTLY_INCREASING

On entry, I ¼ valueh i, xfix½I � ¼ valueh i and xfix½I � 1� ¼ valueh i.
Constraint: xfix½I � > xfix½I � 1�.
On entry, I ¼ valueh i, xi½I � ¼ valueh i and xi½I � 1� ¼ valueh i.
Constraint: xi½I � > xi½I � 1�.
On entry, mesh points x appear to be badly ordered: I ¼ valueh i, x½I � 1� ¼ valueh i, J ¼ valueh i
and x½J � 1� ¼ valueh i.

NE_NOT_WRITE_FILE

Cannot open file valueh i for writing.

NE_REAL

On entry, dxmesh ¼ valueh i.
Constraint: dxmesh � 0:0.

On entry, xratio ¼ valueh i.
Constraint: xratio > 1:0.

NE_REAL_2

On entry, at least one point in xi lies outside x½0�; x½npts� 1�½ �: x½0� ¼ valueh i and
x½npts� 1� ¼ valueh i.
On entry, tout ¼ valueh i and ts ¼ valueh i.
Constraint: tout > ts.

On entry, tout� ts is too small: tout ¼ valueh i and ts ¼ valueh i.

NE_REAL_ARRAY

On entry, I ¼ valueh i and atol½I � 1� ¼ valueh i.
Constraint: atol½I � 1� � 0:0.

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.23

On entry, I ¼ valueh i and rtol½I � 1� ¼ valueh i.
Constraint: rtol½I � 1� � 0:0.

NE_REMESH_CHANGED

remesh has been changed between calls to nag_pde_parab_1d_cd_ode_remesh (d03psc).

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

The functions P , D, or C appear to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires ¼ 2 has been set in user-supplied functions pdedef,
numflx, bndary or odedef. Integration is successful as far as ts: ts ¼ valueh i.

NE_ZERO_WTS

Zero error weights encountered during time integration.

7 Accuracy

nag_pde_parab_1d_cd_ode_remesh (d03psc) controls the accuracy of the integration in the time
direction but not the accuracy of the approximation in space. The spatial accuracy depends on both the
number of mesh points and on their distribution in space. In the time integration only the local error over
a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should
therefore test the effect of varying the accuracy arguments, atol and rtol.

8 Parallelism and Performance

nag_pde_parab_1d_cd_ode_remesh (d03psc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag_pde_parab_1d_cd_ode_remesh (d03psc) makes calls to BLAS and/or LAPACK routines, which may
be threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

nag_pde_parab_1d_cd_ode_remesh (d03psc) is designed to solve systems of PDEs in conservative form,
with optional source terms which are independent of space derivatives, and optional second-order
diffusion terms. The use of the function to solve systems which are not naturally in this form is
discouraged, and you are advised to use one of the central-difference scheme functions for such
problems.

You should be aware of the stability limitations for hyperbolic PDEs. For most problems with small error
tolerances the ODE integrator does not attempt unstable time steps, but in some cases a maximum time
step should be imposed using algopt½12�. It is worth experimenting with this argument, particularly if the
integration appears to progress unrealistically fast (with large time steps). Setting the maximum time step
to the minimum mesh size is a safe measure, although in some cases this may be too restrictive.

Problems with source terms should be treated with caution, as it is known that for large source terms
stable and reasonable looking solutions can be obtained which are in fact incorrect, exhibiting non-
physical speeds of propagation of discontinuities (typically one spatial mesh point per time step). It is

d03psc NAG Library Manual

d03psc.24 Mark 25

essential to employ a very fine mesh for problems with source terms and discontinuities, and to check for
non-physical propagation speeds by comparing results for different mesh sizes. Further details and an
example can be found in Pennington and Berzins (1994).

The time taken depends on the complexity of the system, the accuracy requested, and the frequency of
the mesh updates. For a given system with fixed accuracy and mesh-update frequency it is approximately
proportional to neqn.

10 Example

For this function two examples are presented, with a main program and two example problems given in
Example 1 (ex1) and Example 2 (ex2).

Example 1 (ex1)

This example is a simple model of the advection and diffusion of a cloud of material:

@U

@t
þW@U

@x
¼ C@

2U

@x2
;

for x 2 0; 1½ � and t � 0 � 0:3. In this example the constant wind speed W ¼ 1 and the diffusion
coefficient C ¼ 0:002.

The cloud does not reach the boundaries during the time of integration, and so the two (physical)
boundary conditions are simply U 0; tð Þ ¼ U 1; tð Þ ¼ 0:0, and the initial condition is

U x; 0ð Þ ¼ sin �
x� a
b� a

� 	
; a � x � b;

and U x; 0ð Þ ¼ 0 elsewhere, where a ¼ 0:2 and b ¼ 0:4.

The numerical flux is simply F̂ ¼WUL.

The monitor function for remeshing is taken to be the absolute value of the second derivative of U .

Example 2 (ex2)

This example is a linear advection equation with a nonlinear source term and discontinuous initial
profile:

@u

@t
þ @u
@x
¼ �pu u� 1ð Þ u� 1

2

� �
;

for 0 � x � 1 and t � 0. The discontinuity is modelled by a ramp function of width 0:01 and gradient
100, so that the exact solution at any time t � 0 is

u x; tð Þ ¼ 1:0þmax min �; 0ð Þ;�1ð Þ;

where � ¼ 100 0:1� xþ tð Þ. The initial profile is given by the exact solution. The characteristic points
into the domain at x ¼ 0 and out of the domain at x ¼ 1, and so a physical boundary condition
u 0; tð Þ ¼ 1 is imposed at x ¼ 0, with a numerical boundary condition at x ¼ 1 which can be specified as
u 1; tð Þ ¼ 0 since the discontinuity does not reach x ¼ 1 during the time of integration.

The numerical flux is simply F̂ ¼ UL at all times.

The remeshing monitor function (described below) is chosen to create an increasingly fine mesh towards
the discontinuity in order to ensure good resolution of the discontinuity, but without loss of efficiency in
the surrounding regions. However, refinement must be limited so that the time step required for stability
does not become unrealistically small. The region of refinement must also keep up with the discontinuity
as it moves across the domain, and hence it cannot be so small that the discontinuity moves out of the
refined region between remeshing.

The above requirements mean that the use of the first or second spatial derivative of U for the monitor
function is inappropriate; the large relative size of either derivative in the region of the discontinuity
leads to extremely small mesh-spacing in a very limited region, and the solution is then far more
expensive than for a very fine fixed mesh.

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.25

An alternative monitor function based on a cosine function proves very successful. It is only semi-
automatic as it requires some knowledge of the solution (for problems without an exact solution an
initial approximate solution can be obtained using a coarse fixed mesh). On each call to monitf the
discontinuity is located by finding the maximum spatial derivative of the solution. On the first call the
desired width of the region of nonzero monitor function is set (this can be changed at a later time if
desired). Then on each call the monitor function is assigned using a cosine function so that it has a value
of one at the discontinuity down to zero at the edges of the predetermined region of refinement, and zero
outside the region. Thus the monitor function and the subsequent refinement are limited, and the region
is large enough to ensure that there is always sufficient refinement at the discontinuity.

10.1 Program Text

/* nag_pde_parab_1d_cd_ode_remesh (d03psc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>

static int ex1(void);
static int ex2(void);

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL uvin1(Integer, Integer, Integer, const double[],

const double[], double[], Integer, double[],
Nag_Comm *);

static void NAG_CALL uvin2(Integer, Integer, Integer, const double[],
const double[], double[], Integer, double[],
Nag_Comm *);

static void NAG_CALL pdef1(Integer, double, double, const double[],
const double[], Integer, const double[],
const double[], double[], double[], double[],
double[], Integer *, Nag_Comm *);

static void NAG_CALL pdef2(Integer, double, double, const double[],
const double[], Integer, const double[],
const double[], double[], double[], double[],
double[], Integer *, Nag_Comm *);

static void NAG_CALL bndry1(Integer, Integer, double, const double[],
const double[], Integer, const double[],
const double[], Integer, double[],
Integer *, Nag_Comm *);

static void NAG_CALL bndry2(Integer, Integer, double, const double[],
const double[], Integer, const double[],
const double[], Integer, double[],
Integer *, Nag_Comm *);

static void NAG_CALL monit1(double, Integer, Integer, const double[],
const double[], double[], Nag_Comm *);

static void NAG_CALL monit2(double, Integer, Integer, const double[],
const double[], double[], Nag_Comm *);

static void NAG_CALL nmflx1(Integer, double, double, Integer,

d03psc NAG Library Manual

d03psc.26 Mark 25

const double[], const double[],
const double[], double[], Integer *,
Nag_Comm *, Nag_D03_Save *);

static void NAG_CALL nmflx2(Integer, double, double, Integer,
const double[], const double[],
const double[], double[], Integer *,
Nag_Comm *, Nag_D03_Save *);

#ifdef __cplusplus
}
#endif

static void exact(double, double *, const double *, Integer, Integer);

#define P(I, J) p[npde*((J) -1)+(I) -1]
#define UE(I, J) ue[npde*((J) -1)+(I) -1]
#define U(I, J) u[npde*((J) -1)+(I) -1]
#define UOUT(I, J, K) uout[npde*(intpts*((K) -1)+(J) -1)+(I) -1]

int main(void)
{

Integer exit_status_ex1 = 0;
Integer exit_status_ex2 = 0;

printf("nag_pde_parab_1d_cd_ode_remesh (d03psc) Example Program Results\n");
exit_status_ex1 = ex1();
exit_status_ex2 = ex2();

return (exit_status_ex1 == 0 && exit_status_ex2 == 0) ? 0 : 1;
}

int ex1(void)
{

const Integer npde = 1, npts = 61, ncode = 0, nxi = 0, nxfix = 0, itype = 1;
const Integer neqn = npde*npts+ncode, intpts = 7, lisave = 25+nxfix+neqn;
const Integer nwkres = npde*(3*npts+3*npde+32)+7*npts+3, lenode = 11*neqn+50;
const Integer mlu = 3*npde-1, lrsave = (3*mlu+1)*neqn+nwkres+lenode;
static double ruser1[5] = {-1.0, -1.0, -1.0, -1.0, -1.0};
static double xout[7] = { .2, .3, .4, .5, .6, .7, .8 };
double con, dxmesh, tout, trmesh, ts, xratio;
Integer exit_status, i, ind, ipminf, it, itask, itol, itrace, m,

nrmesh;
Nag_Boolean remesh;
double *algopt = 0, *atol = 0, *rsave = 0, *rtol = 0, *u = 0;
double *uout = 0, *x = 0, *xfix = 0, *xi = 0;
Integer *isave = 0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

INIT_FAIL(fail);

/* For communication with user-supplied functions: */
comm.user = ruser1;

exit_status = 0;

/* Allocate memory */

if (!(algopt = NAG_ALLOC(30, double)) ||
!(atol = NAG_ALLOC(1, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(rtol = NAG_ALLOC(1, double)) ||
!(u = NAG_ALLOC(npde*npts, double)) ||
!(uout = NAG_ALLOC(npde*intpts*itype, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xfix = NAG_ALLOC(1, double)) ||
!(xi = NAG_ALLOC(1, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)))

{
printf("Allocation failure\n");

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.27

exit_status = 1;
goto END;

}

printf("\n\nExample 1\n\n");

itrace = 0;
itol = 1;
atol[0] = 1.0e-4;
rtol[0] = 1.0e-4;

printf(" npts = %4"NAG_IFMT"", npts);
printf(" atol = %12.3e", atol[0]);
printf(" rtol = %12.3e\n\n", rtol[0]);

/* Initialise mesh */

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);
xfix[0] = 0.0;

/* Set remesh parameters */

remesh = Nag_TRUE;
nrmesh = 3;
dxmesh = 0.0;
trmesh = 0.0;
con = 2.0/(npts-1.0);
xratio = 1.5;
ipminf = 0;

xi[0] = 0.0;
ind = 0;
itask = 1;

for (i = 0; i < 30; ++i) algopt[i] = 0.0;

/* b.d.f. integration */

algopt[0] = 1.0;
algopt[12] = 0.005;

/* Loop over output value of t */

ts = 0.0;
tout = 0.0;
for (it = 0; it < 3; ++it)

{
tout = 0.1*(it+1);

/* nag_pde_parab_1d_cd_ode_remesh (d03psc).
* General system of convection-diffusion PDEs with source
* terms in conservative form, coupled DAEs, method of
* lines, upwind scheme using numerical flux function based
* on Riemann solver, remeshing, one space variable
*/

nag_pde_parab_1d_cd_ode_remesh(npde, &ts, tout, pdef1, nmflx1, bndry1,
uvin1, u, npts, x, ncode, NULLFN, nxi, xi,
neqn, rtol, atol, itol, Nag_OneNorm,
Nag_LinAlgBand, algopt, remesh, nxfix,
xfix, nrmesh, dxmesh, trmesh, ipminf,
xratio, con, monit1, rsave, lrsave, isave,
lisave, itask, itrace, 0, &ind,
&comm, &saved, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_pde_parab_1d_cd_ode_remesh (d03psc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

d03psc NAG Library Manual

d03psc.28 Mark 25

printf(" t = %6.3f\n", ts);
printf(" x ");

for (i = 1; i <= intpts; ++i)
{

printf("%9.4f", xout[i-1]);
printf(i%7 == 0 || i == 7?"\n":"");

}

/* Interpolate at output points */

m = 0;
/* nag_pde_interp_1d_fd (d03pzc). PDEs, spatial interpolation with
* nag_pde_parab_1d_cd_ode_remesh (d03psc).
*/

nag_pde_interp_1d_fd(npde, m, u, npts, x, xout, intpts, itype, uout,
&fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_pde_interp_1d_fd (d03pzc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf(" Approx u ");

for (i = 1; i <= intpts; ++i)
{

printf("%9.4f", UOUT(1, i, 1));
printf(i%7 == 0 || i == 7?"\n":"");

}
printf("\n");

}

printf(" Number of integration steps in time = %6"NAG_IFMT"\n", isave[0]);
printf(" Number of function evaluations = %6"NAG_IFMT"\n", isave[1]);
printf(" Number of Jacobian evaluations =%6"NAG_IFMT"\n", isave[2]);
printf(" Number of iterations = %6"NAG_IFMT"\n\n", isave[4]);

END:
NAG_FREE(algopt);
NAG_FREE(atol);
NAG_FREE(rsave);
NAG_FREE(rtol);
NAG_FREE(u);
NAG_FREE(uout);
NAG_FREE(x);
NAG_FREE(xfix);
NAG_FREE(xi);
NAG_FREE(isave);

return exit_status;
}

static void NAG_CALL uvin1(Integer npde, Integer npts, Integer nxi,
const double x[], const double xi[], double u[],
Integer ncode, double v[], Nag_Comm *comm)

{
Integer i;

if (comm->user[0] == -1.0)
{

printf("(User-supplied callback uvin1, first invocation.)\n");
comm->user[0] = 0.0;

}
for (i = 1; i <= npts; ++i)

{
if (x[i-1] > 0.2 && x[i-1] <= 0.4)

{

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.29

U(1, i) = sin(nag_pi*(5.0*x[i-1]-1.0));
}

else
{

U(1, i) = 0.0;
}

}
return;

}

static void NAG_CALL pdef1(Integer npde, double t, double x, const double u[],
const double ux[], Integer ncode, const double v[],
const double vdot[], double p[], double c[],
double d[], double s[], Integer *ires,
Nag_Comm *comm)

{
if (comm->user[1] == -1.0)

{
printf("(User-supplied callback pdef1, first invocation.)\n");
comm->user[1] = 0.0;

}
P(1, 1) = 1.0;
c[0] = 0.002;
d[0] = ux[0];
s[0] = 0.0;

return;
}

static void NAG_CALL bndry1(Integer npde, Integer npts, double t,
const double x[], const double u[], Integer ncode,
const double v[], const double vdot[],
Integer ibnd, double g[], Integer *ires,
Nag_Comm *comm)

{
/* Zero solution at both boundaries */

if (comm->user[2] == -1.0)
{

printf("(User-supplied callback bndry1, first invocation.)\n");
comm->user[2] = 0.0;

}
if (ibnd == 0)

{
g[0] = U(1, 1);

}
else

{
g[0] = U(1, npts);

}
return;

}

static void NAG_CALL monit1(double t, Integer npts, Integer npde,
const double x[], const double u[], double fmon[],
Nag_Comm *comm)

{
double h1, h2, h3;
Integer i;

if (comm->user[3] == -1.0)
{

printf("(User-supplied callback monit1, first invocation.)\n");
comm->user[3] = 0.0;

}
for (i = 2; i <= npts-1; ++i)

{
h1 = x[i - 1] - x[i - 2];
h2 = x[i] - x[i - 1];

d03psc NAG Library Manual

d03psc.30 Mark 25

h3 = 0.5* (x[i] - x[i - 2]);

/* Second derivatives */

fmon[i-1] = fabs(((U(1, i+1) - U(1, i))/h2 -
(U(1, i) - U(1, i-1))/h1)/h3);

}
fmon[0] = fmon[1];
fmon[npts-1] = fmon[npts-2];

return;
}

static void NAG_CALL nmflx1(Integer npde, double t, double x, Integer ncode,
const double v[], const double uleft[],
const double uright[], double flux[],
Integer *ires, Nag_Comm *comm, Nag_D03_Save *saved)

{
if (comm->user[4] == -1.0)

{
printf("(User-supplied callback nmflx1, first invocation.)\n");
comm->user[4] = 0.0;

}
flux [0] = uleft[0];

return;
}

int ex2(void)
{

const Integer npde = 1, npts = 61, ncode = 0, nxi = 0, nxfix = 0, itype = 1;
const Integer neqn = npde*npts+ ncode, intpts = 7, lisave = 25+nxfix+neqn;
const Integer nwkres = npde*(3*npts+3*npde+32)+7*npts+3, lenode = 11*neqn+50;
const Integer mlu = 3*npde-1, lrsave = (3*mlu+1)*neqn+nwkres+lenode;
static double ruser2[5] = {-1.0, -1.0, -1.0, -1.0, -1.0};
static double xout[7] = { 0., .3, .4, .5, .6, .7, 1. };
double con, dxmesh, tout, trmesh, ts, xratio;
Integer exit_status, i, ind, ipminf, it, itask, itol, itrace, m,

nrmesh;
Nag_Boolean remesh;
double *algopt = 0, *atol = 0, *rsave = 0, *rtol = 0, *u = 0, *ue = 0;
double *uout = 0, *x = 0, *xfix = 0, *xi = 0;
Integer *isave = 0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

INIT_FAIL(fail);

/* For communication with user-supplied functions: */
comm.user = ruser2;

exit_status = 0;

/* Allocate memory */

if (!(algopt = NAG_ALLOC(30, double)) ||
!(atol = NAG_ALLOC(1, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(rtol = NAG_ALLOC(1, double)) ||
!(u = NAG_ALLOC(npts, double)) ||
!(ue = NAG_ALLOC(npde*intpts, double)) ||
!(uout = NAG_ALLOC(npde*intpts*itype, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xfix = NAG_ALLOC(1, double)) ||
!(xi = NAG_ALLOC(1, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)))

{
printf("Allocation failure\n");
exit_status = 1;
goto END;

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.31

}

printf("\n\nExample 2\n\n");

itrace = 0;
itol = 1;
atol [0] = 5e-4;
rtol [0] = 0.05;
printf(" npts = %4"NAG_IFMT"", npts);
printf(" atol = %12.3e", atol[0]);
printf(" rtol = %12.3e\n\n", rtol[0]);

/* Initialise mesh */

for (i = 0; i < npts; ++i) x[i] = i/ (npts-1.0);
xfix [0] = 0.0;

/* Set remesh parameters */

remesh = Nag_TRUE;
nrmesh = 5;
dxmesh = 0.0;
trmesh = 0.0;
con = 1.0/(npts-1.0);
xratio = 1.5;
ipminf = 0;
xi[0] = 0.0;
ind = 0;
itask = 1;

for (i = 0; i < 30; ++i) algopt[i] = 0.0;

/* Theta integration */

algopt[0] = 2.0;
algopt[5] = 2.0;
algopt[6] = 2.0;

/* Max. time step */

algopt[12] = 0.0025;

ts = 0.0;
tout = 0.0;
for (it = 0; it < 2; ++it)

{
tout = 0.2* (it+1);

/* nag_pde_parab_1d_cd_ode_remesh (d03psc), see above. */
nag_pde_parab_1d_cd_ode_remesh(npde, &ts, tout, pdef2, nmflx2, bndry2,

uvin2, u, npts, x, ncode, NULLFN, nxi, xi,
neqn, rtol, atol, itol, Nag_OneNorm,
Nag_LinAlgBand, algopt, remesh, nxfix,
xfix, nrmesh, dxmesh, trmesh, ipminf,
xratio, con, monit2, rsave, lrsave, isave,
lisave, itask, itrace, 0, &ind,
&comm, &saved, &fail);

if (fail.code != NE_NOERROR)
{

printf(
"Error from nag_pde_parab_1d_cd_ode_remesh (d03psc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf(" t = %6.3f\n", ts);
printf(" x Approx u Exact u\n\n");

/* Interpolate at output points */

d03psc NAG Library Manual

d03psc.32 Mark 25

m = 0;
/* nag_pde_interp_1d_fd (d03pzc), see above. */
nag_pde_interp_1d_fd(npde, m, u, npts, x, xout, intpts, itype, uout,

&fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_pde_interp_1d_fd (d03pzc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Check against exact solution */

exact(tout, ue, xout, npde, intpts);
for (i = 1; i <= intpts; ++i)

{
printf(" %9.4f", xout[i-1]);
printf(" %9.4f", UOUT(1, i, 1));
printf(" %9.4f\n", UE(1, i));

}
}

printf(" Number of integration steps in time = %6"NAG_IFMT"\n",
isave[0]);

printf(" Number of function evaluations = %6"NAG_IFMT"\n", isave[1]);
printf(" Number of Jacobian evaluations =%6"NAG_IFMT"\n", isave[2]);
printf(" Number of iterations = %6"NAG_IFMT"\n\n", isave[4]);

END:
NAG_FREE(algopt);
NAG_FREE(atol);
NAG_FREE(rsave);
NAG_FREE(rtol);
NAG_FREE(u);
NAG_FREE(ue);
NAG_FREE(uout);
NAG_FREE(x);
NAG_FREE(xfix);
NAG_FREE(xi);
NAG_FREE(isave);

return
exit_status;

}

static void NAG_CALL uvin2(Integer npde, Integer npts, Integer nxi,
const double x[], const double xi[], double u[],
Integer ncode, double v[], Nag_Comm *comm)

{
double t;

if (comm->user[0] == -1.0)
{

printf("(User-supplied callback uvin2, first invocation.)\n");
comm->user[0] = 0.0;

}
t = 0.0;
exact(t, u, x, npde, npts);

return;
}

static void NAG_CALL pdef2(Integer npde, double t, double x, const double u[],
const double ux[], Integer ncode, const double v[],
const double vdot[], double p[], double c[],
double d[], double s[], Integer *ires,
Nag_Comm *comm)

{
if (comm->user[1] == -1.0)

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.33

{
printf("(User-supplied callback pdef2, first invocation.)\n");
comm->user[1] = 0.0;

}
P(1, 1) = 1.0;
c[0] = 0.0;
d[0] = 0.0;
s[0] = -100.0*u[0]*(u[0]-1.0)*(u[0]-0.5);

return;
}

static void NAG_CALL bndry2(Integer npde, Integer npts, double t,
const double x [], const double u[],
Integer ncode, const double v[],
const double vdot [], Integer ibnd, double g[],
Integer *ires, Nag_Comm *comm)

{
/* Solution known to be constant at both boundaries */

double ue[1];

if (comm->user[2] == -1.0)
{

printf("(User-supplied callback bndry2, first invocation.)\n");
comm->user[2] = 0.0;

}
if (ibnd == 0)

{
exact(t, ue, &x[0], npde, 1);
g [0] = UE(1, 1) - U(1, 1);

}
else

{
exact(t, ue, &x[npts-1], npde, 1);
g [0] = UE(1, 1) - U(1, npts);

}

return;
}

static void NAG_CALL nmflx2(Integer npde, double t, double x, Integer ncode,
const double v [], const double uleft[],
const double uright [], double flux[],
Integer *ires, Nag_Comm *comm, Nag_D03_Save *saved)

{
if (comm->user[3] == -1.0)

{
printf("(User-supplied callback nmflx2, first invocation.)\n");
comm->user[3] = 0.0;

}
flux [0] = uleft[0];

return;
}

static void NAG_CALL monit2(double t, Integer npts, Integer npde,
const double x [], const double u [],
double fmon[], Nag_Comm *comm)

{
static double xa = 0.0;
static Integer icount = 0;
double h1, ux, uxmax, xl, xleft, xmax, xr, xright;
Integer i;

if (comm->user[4] == -1.0)
{

printf("(User-supplied callback monit2, first invocation.)\n");
comm->user[4] = 0.0;

}
/* Locate shock */

d03psc NAG Library Manual

d03psc.34 Mark 25

uxmax = 0.0;
xmax = 0.0;
for (i = 2; i <= npts-1; ++i)

{
h1 = x [i - 1] - x[i - 2];
ux = fabs((U(1, i) - U(1, i - 1))/h1);
if (ux > uxmax)

{
uxmax = ux;
xmax = x [i - 1];

}
}

/* Assign width (on first call only) */

if (icount == 0)
{

icount = 1;
xleft = xmax - x[0];
xright = x [npts-1] - xmax;
if (xleft > xright)

{
xa = xright;

}
else

{
xa = xleft;

}
}

xl = xmax - xa;
xr = xmax + xa;

/* Assign monitor function */

for (i = 0; i < npts; ++i)
{

if (x [i] > xl && x[i] < xr)
{

fmon [i] = 1.0 + cos(nag_pi *(x[i] - xmax)/xa);
}

else
{

fmon [i] = 0.0;
}

}
return;

}

static void exact(double t, double *u, const double *x, Integer npde,
Integer npts)

{
/* Exact solution (for comparison and b.c. purposes) */

double del, psi, rm, rn, s;
Integer i;
s = 0.1;
del = 0.01;
rm = -1.0/del;
rn = s /del + 1.0;

for (i = 1; i <= npts; ++i)
{

psi = x[i-1] - t;
if (psi < s)

{
U(1, i) = 1.0;

}
else
if (psi > del + s)

{

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.35

U(1, i) = 0.0;
}

else
{

U(1, i) = rm*psi + rn;
}

}
return;

}

10.2 Program Data

None.

10.3 Program Results

nag_pde_parab_1d_cd_ode_remesh (d03psc) Example Program Results

Example 1

npts = 61 atol = 1.000e-04 rtol = 1.000e-04

(User-supplied callback uvin1, first invocation.)
(User-supplied callback monit1, first invocation.)
(User-supplied callback bndry1, first invocation.)
(User-supplied callback pdef1, first invocation.)
(User-supplied callback nmflx1, first invocation.)
t = 0.100
x 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000
Approx u 0.0000 0.1198 0.9461 0.1182 0.0000 0.0000 0.0000

t = 0.200
x 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000
Approx u 0.0000 0.0007 0.1631 0.9015 0.1629 0.0001 0.0000

t = 0.300
x 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000
Approx u 0.0000 0.0000 0.0025 0.1924 0.8596 0.1946 0.0002

Number of integration steps in time = 92
Number of function evaluations = 443
Number of Jacobian evaluations = 39
Number of iterations = 231

Example 2

npts = 61 atol = 5.000e-04 rtol = 5.000e-02

(User-supplied callback uvin2, first invocation.)
(User-supplied callback monit2, first invocation.)
(User-supplied callback bndry2, first invocation.)
(User-supplied callback pdef2, first invocation.)
(User-supplied callback nmflx2, first invocation.)
t = 0.200

x Approx u Exact u

0.0000 1.0000 1.0000
0.3000 0.9507 1.0000
0.4000 0.0000 0.0000
0.5000 0.0000 0.0000
0.6000 0.0000 0.0000
0.7000 -0.0000 0.0000
1.0000 -0.0000 0.0000

t = 0.400
x Approx u Exact u

0.0000 1.0000 1.0000

d03psc NAG Library Manual

d03psc.36 Mark 25

0.3000 1.0000 1.0000
0.4000 1.0000 1.0000
0.5000 0.9694 1.0000
0.6000 -0.0000 0.0000
0.7000 -0.0000 0.0000
1.0000 0.0000 0.0000

Number of integration steps in time = 468
Number of function evaluations = 1059
Number of Jacobian evaluations = 1
Number of iterations = 2

Example Program 1
Advection and Diffusion of a Cloud of Material

u(
x,

t)

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

Time

 0
 0.2

 0.4
 0.6

 0.8
 1

x

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

d03 – Partial Differential Equations d03psc

Mark 25 d03psc.37

Example Program 2
Linear Advection Equation with Non-linear Source Term

u(
x,

t)

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

Time

 0
 0.2

 0.4
 0.6

 0.8
 1

x

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

d03psc NAG Library Manual

d03psc.38 (last) Mark 25

	d03psc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Berzins et al. (1989)
	Furzeland (1984)
	Hirsch (1990)
	LeVeque (1990)
	Pennington and Berzins (1994)
	Roe (1981)

	5 Arguments
	npde
	ts
	tout
	pdedef
	npde
	t
	x
	u
	ux
	ncode
	v
	vdot
	p
	c
	d
	s
	ires
	comm
	user
	iuser
	p

	numflx
	npde
	t
	x
	ncode
	v
	uleft
	uright
	flux
	ires
	comm
	user
	iuser
	p

	saved

	bndary
	npde
	npts
	t
	x
	u
	ncode
	v
	vdot
	ibnd
	g
	ires
	comm
	user
	iuser
	p

	uvinit
	npde
	npts
	nxi
	x
	xi
	u
	ncode
	v
	comm
	user
	iuser
	p

	u
	npts
	x
	ncode
	odedef
	npde
	t
	ncode
	v
	vdot
	nxi
	xi
	ucp
	ucpx
	ucpt
	r
	ires
	comm
	user
	iuser
	p

	nxi
	xi
	neqn
	rtol
	atol
	itol
	norm
	laopt
	algopt
	remesh
	nxfix
	xfix
	nrmesh
	dxmesh
	trmesh
	ipminf
	xratio
	con
	monitf
	t
	npts
	npde
	x
	u
	fmon
	comm
	user
	iuser
	p

	rsave
	lrsave
	isave
	lisave
	itask
	itrace
	outfile
	ind
	comm
	saved
	fail

	6 Error Indicators and Warnings
	NE_ACC_IN_DOUBT
	NE_ALLOC_FAIL
	NE_BAD_MONIT
	NE_BAD_PARAM
	NE_FAILED_DERIV
	NE_FAILED_START
	NE_FAILED_STEP
	NE_INCOMPAT_PARAM
	NE_INT
	NE_INT_2
	NE_INT_4
	NE_INTERNAL_ERROR
	NE_ITER_FAIL
	NE_NO_LICENCE
	NE_NOT_CLOSE_FILE
	NE_NOT_STRICTLY_INCREASING
	NE_NOT_WRITE_FILE
	NE_REAL
	NE_REAL_2
	NE_REAL_ARRAY
	NE_REMESH_CHANGED
	NE_SING_JAC
	NE_TIME_DERIV_DEP
	NE_USER_STOP
	NE_ZERO_WTS

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

