
NAG Library Function Document

nag_ode_ivp_rkts_setup (d02pqc)

1 Purpose

nag_ode_ivp_rkts_setup (d02pqc) is a setup function which must be called prior to the first call of either
of the integration functions nag_ode_ivp_rkts_range (d02pec) and nag_ode_ivp_rkts_onestep (d02pfc).

2 Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_rkts_setup (Integer n, double tstart, double tend,
const double yinit[], double tol, const double thresh[],
Nag_RK_method method, Nag_ErrorAssess errass, double hstart,
Integer iwsav[], double rwsav[], NagError *fail)

3 Description

nag_ode_ivp_rkts_setup (d02pqc) and its associated functions (nag_ode_ivp_rkts_range (d02pec),
nag_ode_ivp_rkts_onestep (d02pfc), nag_ode_ivp_rkts_reset_tend (d02prc), nag_ode_ivp_rkts_interp
(d02psc), nag_ode_ivp_rkts_diag (d02ptc) and nag_ode_ivp_rkts_errass (d02puc)) solve the initial value
problem for a first-order system of ordinary differential equations. The functions, based on Runge–Kutta
methods and derived from RKSUITE (see Brankin et al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0

where y is the vector of n solution components and t is the independent variable.

The integration proceeds by steps from the initial point t0 towards the final point tf . An approximate
solution y is computed at each step. For each component yi, for i ¼ 1; 2; . . . ; n, the error made in the
step, i.e., the local error, is estimated. The step size is chosen automatically so that the integration will
proceed efficiently while keeping this local error estimate smaller than a tolerance that you specify by
means of arguments tol and thresh.

nag_ode_ivp_rkts_range (d02pec) can be used to solve the ‘usual task’, namely integrating the system of
differential equations to obtain answers at points you specify. nag_ode_ivp_rkts_onestep (d02pfc) is used
for all more ‘complicated tasks’.

You should consider carefully how you want the local error to be controlled. Essentially the code uses
relative local error control, with tol being the desired relative accuracy. For reliable computation, the
code must work with approximate solutions that have some correct digits, so there is an upper bound on
the value used for tol. It is impossible to compute a numerical solution that is more accurate than the
correctly rounded value of the true solution, so you are not allowed to specify tol too small for the
precision you are using. The magnitude of the local error in yi on any step will not be greater than
tol�max �i; thresh½i� 1�ð Þ where �i is an average magnitude of yi over the step. If thresh½i� 1� is
smaller than the current value of �i, this is a relative error test and tol indicates how many significant
digits you want in yi. If thresh½i� 1� is larger than the current value of �i, this is an absolute error test
with tolerance tol� thresh½i� 1�. Relative error control is the recommended mode of operation, but
pure relative error control, thresh½i� 1� ¼ 0:0, is not permitted. See Section 9 for further information
about error control.

nag_ode_ivp_rkts_range (d02pec) and nag_ode_ivp_rkts_onestep (d02pfc) control local error rather than
the true (global) error, the difference between the numerical and true solution. Control of the local error
controls the true error indirectly. Roughly speaking, the code produces a solution that satisfies the
differential equation with a discrepancy bounded in magnitude by the error tolerance. What this implies
about how close the numerical solution is to the true solution depends on the stability of the problem.
Most practical problems are at least moderately stable, and the true error is then comparable to the error

d02 – Ordinary Differential d02pqc

Mark 25 d02pqc.1



tolerance. To judge the accuracy of the numerical solution, you could reduce tol substantially, e.g., use
0:1� tol, and solve the problem again. This will usually result in a rather more accurate solution, and
the true error of the first integration can be estimated by comparison. Alternatively, a global error
assessment can be computed automatically using the argument errass. Because indirect control of the
true error by controlling the local error is generally satisfactory and because both ways of assessing true
errors cost twice, or more, the cost of the integration itself, such assessments are used mostly for spot
checks, selecting appropriate tolerances for local error control, and exploratory computations.

nag_ode_ivp_rkts_range (d02pec) and nag_ode_ivp_rkts_onestep (d02pfc) each implement three Runge–
Kutta formula pairs, and you must select one for the integration. The best choice for method depends on
the problem. The order of accuracy is 3, 5 and 8 respectively. As a rule, the smaller tol is, the larger you
should take the order of the method. If the components thresh are small enough that you are effectively
specifying relative error control, experience suggests

tol efficient method

10�2 � 10�4 order 2 and 3 pair

10�3 � 10�6 order 4 and 5 pair

10�5 � order 7 and 8 pair

The overlap in the ranges of tolerances appropriate for a given method merely reflects the dependence of
efficiency on the problem being solved. Making tol smaller will normally make the integration more
expensive. However, in the range of tolerances appropriate to a method, the increase in cost is modest.
There are situations for which one method, or even this kind of code, is a poor choice. You should not
specify a very small value for thresh½i� 1�, when the ith solution component might vanish. In particular,
you should not do this when yi ¼ 0:0. If you do, the code will have to work hard with any value for
method to compute significant digits, but the lowest order method is a particularly poor choice in this
situation. All three methods are inefficient when the problem is ‘stiff’. If it is only mildly stiff, you can
solve it with acceptable efficiency with the order 2 and 3 pair, but if it is moderately or very stiff, a code
designed specifically for such problems will be much more efficient. The higher the order the more
smoothness is required of the solution in order for the method to be efficient.

When assessment of the true (global) error is requested, this error assessment is updated at each step. Its
value can be obtained at any time by a call to nag_ode_ivp_rkts_errass (d02puc). The code monitors the
computation of the global error assessment and reports any doubts it has about the reliability of the
results. The assessment scheme requires some smoothness of f t; yð Þ, and it can be deceived if f is
insufficiently smooth. At very crude tolerances the numerical solution can become so inaccurate that it is
impossible to continue assessing the accuracy reliably. At very stringent tolerances the effects of finite
precision arithmetic can make it impossible to assess the accuracy reliably. The cost of this is roughly
twice the cost of the integration itself with the 5th and 8th order methods, and three times with the 3rd
order method.

The first step of the integration is critical because it sets the scale of the problem. The integrator will find
a starting step size automatically if you set the argument hstart to 0:0. Automatic selection of the first
step is so effective that you should normally use it. Nevertheless, you might want to specify a trial value
for the first step to be certain that the code recognizes the scale on which phenomena occur near the
initial point. Also, automatic computation of the first step size involves some cost, so supplying a good
value for this step size will result in a less expensive start. If you are confident that you have a good
value, provide it via the argument hstart.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

d02pqc NAG Library Manual

d02pqc.2 Mark 25



5 Arguments

1: n – Integer Input

On entry: n, the number of ordinary differential equations in the system to be solved by the
integration function.

Constraint: n � 1.

2: tstart – double Input

On entry: the initial value of the independent variable, t0.

3: tend – double Input

On entry: the final value of the independent variable, tf , at which the solution is required. tstart
and tend together determine the direction of integration.

Constraint: tend must be distinguishable from tstart for the method and the precision of the
machine being used.

4: yinit½n� – const double Input

On entry: y0, the initial values of the solution, yi, for i ¼ 1; 2; . . . ; n.

5: tol – double Input

O n e n t r y : a r e l a t i v e e r r o r t o l e r a n c e . T h e a c t u a l t o l e r a n c e u s e d i s
max 10�machine precision;min tol; 0:01ð Þð Þ; that is, the minimum tolerance is set at 10 times
machine precision and the maximum tolerance is set at 0:01.

6: thresh½n� – const double Input

On entry: a vector of thresholds. For the ith component, the actual threshold used is
max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
saferange
p

; thresh½i� 1�
� �

, w h e r e saferange i s t h e v a l u e r e t u r n e d b y
nag_real_safe_small_number (X02AMC).

7: method – Nag_RK_method Input

On entry: the Runge–Kutta method to be used.

method ¼ Nag RK 2 3
A 2 3ð Þ pair is used.

method ¼ Nag RK 4 5
A 4 5ð Þ pair is used.

method ¼ Nag RK 7 8
A 7 8ð Þ pair is used.

Constraint: method ¼ Nag RK 2 3, Nag RK 4 5 or Nag RK 7 8.

8: errass – Nag_ErrorAssess Input

On entry: specifies whether a global error assessment is to be computed with the main integration.
errass ¼ Nag ErrorAssess on specifies that it is.

Constraint: errass ¼ Nag ErrorAssess on or Nag ErrorAssess off.

9: hstart – double Input

On entry: a value for the size of the first step in the integration to be attempted. The absolute
value of hstart is used with the direction being determined by tstart and tend. The actual first
step taken by the integrator may be different to hstart if the underlying algorithm determines that
hstart is unsuitable. If hstart ¼ 0:0 then the size of the first step is computed automatically.

d02 – Ordinary Differential d02pqc

Mark 25 d02pqc.3



Suggested value: hstart ¼ 0:0.

10: iwsav½130� – Integer Communication Array

11: rwsav½32� nþ 350� – double Communication Array

On exit: the contents of the communication arrays must not be changed prior to calling one of the
integration functions.

12: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, n ¼ valueh i.
Constraint: n � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL_2

On entry, tstart ¼ valueh i.
Constraint: tstart 6¼ tend.

On entry, tstart is too close to tend.
tstart� tendj j ¼ valueh i, but this quantity should be at least valueh i.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

d02pqc NAG Library Manual

d02pqc.4 Mark 25



9 Further Comments

If nag_ode_ivp_rkts_onestep (d02pfc) is to be used for the integration then the value of the argument
tend may be reset during the integration without the overhead associated with a complete restart; this can
be achieved by a call to nag_ode_ivp_rkts_reset_tend (d02prc).

It is often the case that a solution component yi is of no interest when it is smaller in magnitude than a
certain threshold. You can inform the code of this by setting thresh½i� 1� to this threshold. In this way
you avoid the cost of computing significant digits in yi when only the fact that it is smaller than the
threshold is of interest. This matter is important when yi vanishes, and in particular, when the initial
value yinit½i� 1� vanishes. An appropriate threshold depends on the general size of yi in the course of
the integration. Physical reasoning may help you select suitable threshold values. If you do not know
what to expect of y, you can find out by a preliminary integration using nag_ode_ivp_rkts_range
(d02pec) with nominal values of thresh. As nag_ode_ivp_rkts_range (d02pec) steps from t0 towards tf
for each i ¼ 1; 2; . . . ; n it forms ymax½i� 1�, the largest magnitude of yi computed at any step in the
integration so far. Using this you can determine more appropriate values for thresh for an accurate
integration. You might, for example, take thresh½i� 1� to be 10�machine precision times the final
value of ymax½i� 1�.

10 Example

See Section 10 in nag_ode_ivp_rkts_range (d02pec), nag_ode_ivp_rkts_onestep (d02pfc),
nag_ode_ivp_rkts_reset_tend (d02prc), nag_ode_ivp_rkts_interp (d02psc) and nag_ode_ivp_rkts_errass
(d02puc).

d02 – Ordinary Differential d02pqc

Mark 25 d02pqc.5 (last)


	d02pqc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Brankin et al. (1991)

	5 Arguments
	n
	tstart
	tend
	yinit
	tol
	thresh
	method
	errass
	hstart
	iwsav
	rwsav
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_REAL_2

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction




