
NAG Library Function Document

nag_ode_bvp_fd_nonlin_fixedbc (d02gac)

1 Purpose

nag_ode_bvp_fd_nonlin_fixedbc (d02gac) solves the two-point boundary value problem with assigned
boundary values for a system of ordinary differential equations, using a deferred correction technique
and a Newton iteration.

2 Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_bvp_fd_nonlin_fixedbc (Integer neq,

void (*fcn)(Integer neq, double x, const double y[], double f[],
Nag_User *comm),

double a, double b, const double u[], const Integer v[], Integer mnp,
Integer *np, double x[], double y[], double tol, Nag_User *comm,
NagError *fail)

3 Description

nag_ode_bvp_fd_nonlin_fixedbc (d02gac) solves a two-point boundary value problem for a system of
neq differential equations in the interval a; b½ �. The system is written in the form

y0i ¼ fi x; y1; y2; . . . ; yneq

� �
; i ¼ 1; 2; . . . ; neq ð1Þ

and the derivatives are evaluated by fcn. Initially, neq boundary values of the variables yi must be
specified (assigned), some at a and some at b. You also need to supply estimates of the remaining neq
boundary values and all the boundary values are used in constructing an initial approximation to the
solution. This approximate solution is corrected by a finite difference technique with deferred correction
allied with a Newton iteration to solve the finite difference equations. The technique used is described

fully in Pereyra (1979). The Newton iteration requires a Jacobian matrix
@fi
@yj

and this is calculated by

numerical differentiation using an algorithm described in Curtis et al. (1974).

You need to supply an absolute error tolerance and may also supply an initial mesh for the construction
of the finite difference equations (alternatively a default mesh is used). The algorithm constructs a
solution on a mesh defined by adding points to the initial mesh. This solution is chosen so that the error
is everywhere less than your tolerance and so that the error is approximately equidistributed on the final
mesh. The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh. If on
the other hand the solution is required at several specific points then you should use the interpolation
functions provided in Chapter e01 if these points do not themselves form a convenient mesh.

4 References

Curtis A R, Powell M J D and Reid J K (1974) On the estimation of sparse Jacobian matrices J. Inst.
Maths. Applics. 13 117–119

Pereyra V (1979) PASVA3: An adaptive finite-difference Fortran program for first order nonlinear,
ordinary boundary problems Codes for Boundary Value Problems in Ordinary Differential Equations.
Lecture Notes in Computer Science (eds B Childs, M Scott, J W Daniel, E Denman and P Nelson) 76
Springer–Verlag

d02 – Ordinary Differential d02gac

Mark 25 d02gac.1



5 Arguments

1: neq – Integer Input

On entry: the number of equations.

Constraint: neq � 2.

2: fcn – function, supplied by the user External Function

fcn must evaluate the functions fi (i.e., the derivatives y0i) at the general point x.

The specification of fcn is:

void fcn (Integer neq, double x, const double y[], double f[],
Nag_User *comm)

1: neq – Integer Input

On entry: the number of differential equations.

2: x – double Input

On entry: the value of the argument x.

3: y½neq� – const double Input

On entry: y i � 1½ � holds the value of the argument yi, for i ¼ 1; 2; . . . ; neq.

4: f ½neq� – double Output

On exit: f i � 1½ � must contain the values of fi, for i ¼ 1; 2; . . . ;neq.

5: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,

struct user *s = (struct user *)comm ! p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

3: a – double Input

On entry: the left-hand boundary point, a.

4: b – double Input

On entry: the right-hand boundary point, b.

Constraint: b > a.

5: u½neq� 2� – const double Input

On entry: u½ i� 1ð Þ � 2� must be set to the known (assigned) or estimated values of yi at a and
u½ i � 1ð Þ � 2þ 1� must be set to the known or estimated values of yi at b, for i ¼ 1; 2; . . . ; neq.

6: v½neq� 2� – const Integer Input

On entry: v½ i� 1ð Þ � 2þ j� 1� must be set to 0 if u½ i� 1ð Þ � 2þ j� 1� is a known (assigned)
value and to 1 if u½ i� 1ð Þ � 2þ j� 1� is an estimated value, i ¼ 1; 2; . . . ;neq and j ¼ 1; 2.

Constraint: precisely neq of the v½ i� 1ð Þ � 2þ j� 1� must be set to 0, i.e., precisely neq of
u½ i� 1ð Þ � 2� and u½ i� 1ð Þ � 2þ 1� must be known values and these must not be all at a or b.
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7: mnp – Integer Input

On entry: the maximum permitted number of mesh points.

Constraint: mnp � 32.

8: np – Integer * Input/Output

On entry: determines whether a default or user-supplied initial mesh is used.

np ¼ 0
np is set to a default value of 4 and a corresponding equispaced mesh
x½0�; x½1�; . . . ; x½np� 1� is used.

np � 4
You must define an initial mesh using the array x as described.

Constraint: np ¼ 0 or 4 � np � mnp.

On exit: the number of points in the final (returned) mesh.

9: x½mnp� – double Input/Output

On entry: if np � 4 (see np above), the first np elements must define an initial mesh. Otherwise
the elements of x need not be set.

Constraint:

a ¼ x½0� < x½1� < � � � < x½np� 1� ¼ b for np � 4 ð2Þ
On exit: x½0�; x½1�; . . . ; x½np� 1� define the final mesh (with the returned value of np) satisfying
the relation (2).

10: y½neq�mnp� – double Output

On exit: the approximate solution zj xið Þ satisfying (3), on the final mesh, that is

y½ j� 1ð Þ �mnpþ i� 1� ¼ zj xið Þ; i ¼ 1; 2; . . . ; np; j ¼ 1; 2; . . . ; neq;

where np is the number of points in the final mesh.

The remaining columns of y are not used.

11: tol – double Input

On entry: a positive absolute error tolerance. If

a ¼ x1 < x2 < � � � < xnp ¼ b

is the final mesh, zj xið Þ is the jth component of the approximate solution at xi, and yj xið Þ is the
jth component of the true solution of equation (1) (see Section 3) and the boundary conditions,
then, except in extreme cases, it is expected that

zj xið Þ � yj xið Þ
�� �� � tol; i ¼ 1; 2; . . . ;np; j ¼ 1; 2; . . . ;neq ð3Þ

Constraint: tol > 0:0.

12: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p, of type Pointer, allows you to communicate
information to and from fcn. An object of the required type should be declared, e.g., a
structure, and its address assigned to the pointer comm!p by means of a cast to Pointer in
the calling program, e.g., comm.p = (Pointer)&s. The type pointer will be void * with
a C compiler that defines void * and char * otherwise.
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13: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_REAL_ARG_LE

On entry, b ¼ valueh i while a ¼ valueh i. These arguments must satisfy b > a.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_CONV_MESH

A finer mesh is required for the accuracy requested; that is mnp is not large enough.

NE_CONV_MESH_INIT

The Newton iteration failed to converge on the initial mesh. This may be due to the initial mesh
having too few points or the initial approximate solution being too inaccurate. Try using
nag_ode_bvp_fd_nonlin_gen (d02rac).

NE_CONV_ROUNDOFF

Solution cannot be improved due to roundoff error. Too much accuracy might have been
requested.

NE_INT_ARG_LT

On entry, mnp ¼ valueh i.
Constraint: mnp � 32.

On entry, neq ¼ valueh i.
Constraint: neq � 2.

NE_INT_RANGE_CONS_2

On entry, np ¼ valueh i and mnp ¼ valueh i. The argument np must satisfy either 4 � np � mnp
or np ¼ 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_LF_B_MESH

On entry, the left boundary value a, has not been set to x½0�: a ¼ valueh i, x½0� ¼ valueh i.

NE_LF_B_VAL

The number of known left boundary values must be less than the number of equations:
The number of known left boundary values ¼ valueh i:
The number of equations ¼ valueh i.

NE_LFRT_B_VAL

The sum of known left and right boundary values must equal the number of equations:
The number of known left boundary values ¼ valueh i:
The number of known right boundary values ¼ valueh i:
The number of equations ¼ valueh i.
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NE_NOT_STRICTLY_INCREASING

The sequence x is not strictly increasing: x½ valueh i� ¼ valueh i, x½ valueh i� ¼ valueh i.

NE_REAL_ARG_LE

On entry, tol must not be less than or equal to 0.0: tol ¼ valueh i.

NE_RT_B_MESH

On entry, the right boundary value b, has not been set to x½np� 1�: b ¼ valueh i,
x½np� 1� ¼ valueh i.

NE_RT_B_VAL

The number of known right boundary values must be less than the number of equations:
The number of known right boundary values ¼ valueh i:
The number of equations ¼ valueh i.

7 Accuracy

The solution returned by nag_ode_bvp_fd_nonlin_fixedbc (d02gac) will be accurate to your tolerance as
defined by the relation (3) except in extreme circumstances. If too many points are specified in the initial
mesh, the solution may be more accurate than requested and the error may not be approximately
equidistributed.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by the function depends on the difficulty of the problem, the number of mesh points used
(and the number of different meshes used), the number of Newton iterations and the number of deferred
corrections.

A common cause of convergence problems in the Newton iteration is that you are specifying too few
points in the initial mesh. Although the function adds points to the mesh to improve accuracy it is unable
to do so until the solution on the initial mesh has been calculated in the Newton iteration.

If the known and estimated boundary values are set to zero, the function constructs a zero initial
approximation and in many cases the Jacobian is singular when evaluated for this approximation, leading
to the breakdown of the Newton iteration.

You may be unable to provide a sufficiently good choice of initial mesh and estimated boundary values,
and hence the Newton iteration may never converge. In this case the continuation facility provided in
nag_ode_bvp_fd_nonlin_gen (d02rac) is recommended.

In the case where you wish to solve a sequence of similar problems, the final mesh from solving one
case is strongly recommended as the initial mesh for the next.

10 Example

We solve the differential equation

y000 ¼ �yy00 � � 1� y02
� �

with boundary conditions

y 0ð Þ ¼ y0 0ð Þ ¼ 0; y0 10ð Þ ¼ 1

for � ¼ 0:0 and � ¼ 0:2 to an accuracy specified by tol ¼ 1:0e�3. We solve first the simpler problem
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with � ¼ 0:0 using an equispaced mesh of 26 points and then we solve the problem with � ¼ 0:2 using
the final mesh from the first problem.

10.1 Program Text

/* nag_ode_bvp_fd_nonlin_fixedbc (d02gac) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 3, 1992.
* Mark 7 revised, 2001.
* Mark 8 revised, 2004.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL fcn(Integer neq, double x, const double y[], double f[],

Nag_User *comm);
#ifdef __cplusplus
}
#endif

#define NEQ 3
#define MNP 40

#define U(I, J) u[(I) *tdu + J]
#define Y(I, J) y[(I) *tdy + J]
#define V(I, J) v[(I) *tdv + J]

int main(void)
{

Integer exit_status = 0, i, j, k, mnp, neq, np, tdu, tdv, tdy, *v = 0;
NagError fail;
Nag_User comm;
double a, b, beta, tol, *u = 0, *x = 0, *y = 0;

INIT_FAIL(fail);

printf(
"nag_ode_bvp_fd_nonlin_fixedbc (d02gac) Example Program Results\n");

/* For communication with function fcn()
* assign address of beta to comm.p.
*/

comm.p = (Pointer)&beta;
neq = NEQ;
mnp = MNP;
tol = 0.001;
np = 26;
a = 0.0;
b = 10.0;
beta = 0.0;
if (mnp >= 32 && neq >= 2)

{
if (!(u = NAG_ALLOC(neq*2, double)) ||

!(x = NAG_ALLOC(mnp, double)) ||
!(y = NAG_ALLOC(neq*mnp, double)) ||
!(v = NAG_ALLOC(neq*2, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;
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}
tdu = 2;
tdy = mnp;
tdv = 2;

}
else

{
exit_status = 1;
return exit_status;

}
for (i = 0; i < neq; ++i)

for (j = 0; j < 2; ++j)
{

U(i, j) = 0.0;
V(i, j) = 0;

}

V(2, 0) = 1;
V(0, 1) = 1;
V(2, 1) = 1;
U(1, 1) = 1.0;
U(0, 1) = b;
x[0] = a;
for (i = 2; i <= np-1; ++i)

x[i-1] = ((double)(np-i)*a + (double)(i-1)*b)/
(double)(np-1);

x[np-1] = b;
for (k = 1; k <= 2; ++k)

{
printf("\nProblem with beta = %7.4f\n", beta);
/* nag_ode_bvp_fd_nonlin_fixedbc (d02gac).
* Ordinary differential equations solver, for simple
* nonlinear two-point boundary value problems, using a
* finite difference technique with deferred correction
*/

nag_ode_bvp_fd_nonlin_fixedbc(neq, fcn, a, b, u, v, mnp,
&np, x, y, tol, &comm, &fail);

if (fail.code == NE_NOERROR || fail.code == NE_CONV_ROUNDOFF)
{

if (fail.code == NE_CONV_ROUNDOFF)
{

printf("Error from nag_ode_bvp_fd_nonlin_fixedbc (d02gac)"
".\n%s\n", fail.message);

exit_status = 2;
}

printf("\nSolution on final mesh of %"NAG_IFMT" points\n", np);
printf(" X Y(1) Y(2) Y(3)\n");
for (i = 0; i <= np-1; ++i)

{
printf(" %9.4f ", x[i]);
for (j = 0; j < neq; ++j)

printf(" %9.4f ", Y(j, i));
printf("\n");

}
beta += 0.2;

}
else

{
printf(

"Error from nag_ode_bvp_fd_nonlin_fixedbc (d02gac).\n%s\n",
fail.message);

exit_status = 1;
}

}
END:
NAG_FREE(u);
NAG_FREE(x);
NAG_FREE(y);
NAG_FREE(v);
return exit_status;
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}

static void NAG_CALL fcn(Integer neq, double x, const double y[], double f[],
Nag_User *comm)

{
double *beta = (double *) comm->p;

f[0] = y[1];
f[1] = y[2];
f[2] = -y[0] * y[2] - *beta * (1.0-y[1]*y[1]);

}

10.2 Program Data

None.

10.3 Program Results

nag_ode_bvp_fd_nonlin_fixedbc (d02gac) Example Program Results

Problem with beta = 0.0000

Solution on final mesh of 26 points
X Y(1) Y(2) Y(3)

0.0000 0.0000 0.0000 0.4695
0.4000 0.0375 0.1876 0.4673
0.8000 0.1497 0.3719 0.4511
1.2000 0.3336 0.5450 0.4104
1.6000 0.5828 0.6963 0.3424
2.0000 0.8864 0.8163 0.2558
2.4000 1.2309 0.9009 0.1678
2.8000 1.6026 0.9529 0.0953
3.2000 1.9900 0.9805 0.0464
3.6000 2.3851 0.9930 0.0193
4.0000 2.7834 0.9978 0.0069
4.4000 3.1829 0.9994 0.0021
4.8000 3.5828 0.9999 0.0006
5.2000 3.9828 1.0000 0.0001
5.6000 4.3828 1.0000 0.0000
6.0000 4.7828 1.0000 0.0000
6.4000 5.1828 1.0000 0.0000
6.8000 5.5828 1.0000 0.0000
7.2000 5.9828 1.0000 -0.0000
7.6000 6.3828 1.0000 0.0000
8.0000 6.7828 1.0000 -0.0000
8.4000 7.1828 1.0000 0.0000
8.8000 7.5828 1.0000 -0.0000
9.2000 7.9828 1.0000 0.0000
9.6000 8.3828 1.0000 -0.0000

10.0000 8.7828 1.0000 -0.0000

Problem with beta = 0.2000

Solution on final mesh of 26 points
X Y(1) Y(2) Y(3)

0.0000 0.0000 0.0000 0.6865
0.4000 0.0528 0.2584 0.6040
0.8000 0.2020 0.4814 0.5091
1.2000 0.4324 0.6636 0.4001
1.6000 0.7268 0.8007 0.2860
2.0000 1.0670 0.8939 0.1821
2.4000 1.4368 0.9498 0.1017
2.8000 1.8233 0.9791 0.0492
3.2000 2.2180 0.9924 0.0206
3.6000 2.6162 0.9976 0.0074
4.0000 3.0157 0.9993 0.0023
4.4000 3.4156 0.9998 0.0006
4.8000 3.8155 1.0000 0.0001
5.2000 4.2155 1.0000 0.0000
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5.6000 4.6155 1.0000 0.0000
6.0000 5.0155 1.0000 0.0000
6.4000 5.4155 1.0000 -0.0000
6.8000 5.8155 1.0000 -0.0000
7.2000 6.2155 1.0000 -0.0000
7.6000 6.6155 1.0000 -0.0000
8.0000 7.0155 1.0000 -0.0000
8.4000 7.4155 1.0000 -0.0000
8.8000 7.8155 1.0000 -0.0000
9.2000 8.2155 1.0000 -0.0000
9.6000 8.6155 1.0000 -0.0000

10.0000 9.0155 1.0000 -0.0000
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