
NAG Library Function Document

nag_quad_1d_gauss_wgen (d01tcc)

1 Purpose

nag_quad_1d_gauss_wgen (d01tcc) returns the weights (normal or adjusted) and abscissae for a
Gaussian integration rule with a specified number of abscissae. Six different types of Gauss rule are
allowed.

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_quad_1d_gauss_wgen (Nag_QuadType quad_type, double a, double b,
double c, double d, Integer n, double weight[], double abscis[],
NagError *fail)

3 Description

nag_quad_1d_gauss_wgen (d01tcc) returns the weights wi and abscissae xi for use in the summation

S ¼
Xn
i¼1

wif xið Þ

which approximates a definite integral (see Davis and Rabinowitz (1975) or Stroud and Secrest (1966)).
The following types are provided:

(a) Gauss–Legendre

S ’
Z b

a

f xð Þ dx; exact for f xð Þ ¼ P2n�1 xð Þ:

Constraint: b > a.

(b) Gauss–Jacobi

normal weights:

S ’
Z b

a

b� xð Þc x� að Þdf xð Þ dx; exact for f xð Þ ¼ P2n�1 xð Þ;

adjusted weights:

S ’
Z b

a

f xð Þ dx; exact for f xð Þ ¼ b� xð Þc x� að ÞdP2n�1 xð Þ:

Constraint: c > �1, d > �1, b > a.

(c) Exponential Gauss

normal weights:

S ’
Z b

a

x� aþ b
2

����
����
c

f xð Þ dx; exact for f xð Þ ¼ P2n�1 xð Þ;

adjusted weights:

d01 – Quadrature d01tcc

Mark 25 d01tcc.1

S ’
Z b

a

f xð Þ dx; exact for f xð Þ ¼ x� aþ b
2

����
����
c

P2n�1 xð Þ:

Constraint: c > �1, b > a.

(d) Gauss–Laguerre

normal weights:

S ’
Z 1
a

x� aj jce�bxf xð Þ dx b > 0ð Þ;

’
Z a

�1
x� aj jce�bxf xð Þ dx b < 0ð Þ; exact for f xð Þ ¼ P2n�1 xð Þ;

adjusted weights:

S ’
Z 1
a

f xð Þ dx b > 0ð Þ;

’
Z a

�1
f xð Þ dx b < 0ð Þ; exact for f xð Þ ¼ x� aj jce�bxP2n�1 xð Þ:

Constraint: c > �1, b 6¼ 0.

(e) Gauss–Hermite

normal weights:

S ’
Z þ1
�1

x� aj jce�b x�að Þ2f xð Þ dx; exact for f xð Þ ¼ P2n�1 xð Þ;

adjusted weights:

S ’
Z þ1
�1

f xð Þ dx; exact for f xð Þ ¼ x� aj jce�b x�að Þ2P2n�1 xð Þ:

Constraint: c > �1, b > 0.

(f) Rational Gauss

normal weights:

S ’
Z 1
a

x�aj jc

xþbj jdf xð Þ dx aþ b > 0ð Þ;

’
Z a

�1

x�aj jc

xþbj jdf xð Þ dx aþ b < 0ð Þ; exact for f xð Þ ¼ P2n�1
1
xþb

� �
;

adjusted weights:

S ’
Z 1
a

f xð Þ dx aþ b > 0ð Þ;

’
Z a

�1
f xð Þ dx aþ b < 0ð Þ; exact for f xð Þ ¼ x�aj jc

xþbj jdP2n�1
1
xþb

� �
:

Constraint: c > �1, d > cþ 1, aþ b 6¼ 0.

In the above formulae, P2n�1 xð Þ stands for any polynomial of degree 2n� 1 or less in x.

The method used to calculate the abscissae involves finding the eigenvalues of the appropriate
tridiagonal matrix (see Golub and Welsch (1969)). The weights are then determined by the formula

d01tcc NAG Library Manual

d01tcc.2 Mark 25

wi ¼
Xn�1

j¼0

P �j xið Þ
2

()�1

where P �j xð Þ is the jth orthogonal polynomial with respect to the weight function over the appropriate

interval.

The weights and abscissae produced by nag_quad_1d_gauss_wgen (d01tcc) may be passed to
nag_quad_md_gauss (d01fbc), which will evaluate the summations in one or more dimensions.

4 References

Davis P J and Rabinowitz P (1975) Methods of Numerical Integration Academic Press

Golub G H and Welsch J H (1969) Calculation of Gauss quadrature rules Math. Comput. 23 221–230

Stroud A H and Secrest D (1966) Gaussian Quadrature Formulas Prentice–Hall

5 Arguments

1: quad type – Nag_QuadType Input

On entry: indicates the type of quadrature rule.

quad type ¼ Nag Quad Gauss Legendre
Gauss–Legendre, with normal weights.

quad type ¼ Nag Quad Gauss Jacobi
Gauss–Jacobi, with normal weights.

quad type ¼ Nag Quad Gauss Jacobi Adjusted
Gauss–Jacobi, with adjusted weights.

quad type ¼ Nag Quad Gauss Exponential
Exponential Gauss, with normal weights.

quad type ¼ Nag Quad Gauss Exponential Adjusted
Exponential Gauss, with adjusted weights.

quad type ¼ Nag Quad Gauss Laguerre
Gauss–Laguerre, with normal weights.

quad type ¼ Nag Quad Gauss Laguerre Adjusted
Gauss–Laguerre, with adjusted weights.

quad type ¼ Nag Quad Gauss Hermite
Gauss–Hermite, with normal weights.

quad type ¼ Nag Quad Gauss Hermite Adjusted
Gauss–Hermite, with adjusted weights.

quad type ¼ Nag Quad Gauss Rational
Rational Gauss, with normal weights.

quad type ¼ Nag Quad Gauss Rational Adjusted
Rational Gauss, with adjusted weights.

Constraint: quad type ¼ Nag Quad Gauss Legendre, Nag Quad Gauss Jacobi,
Nag Quad Gauss Jacobi Adjusted, Nag Quad Gauss Exponential,
Nag Quad Gauss Exponential Adjusted, Nag Quad Gauss Laguerre,
Nag Quad Gauss Laguerre Adjusted, Nag Quad Gauss Hermite,
Nag Quad Gauss Hermite Adjusted, Nag Quad Gauss Rational or
Nag Quad Gauss Rational Adjusted.

d01 – Quadrature d01tcc

Mark 25 d01tcc.3

2: a – double Input
3: b – double Input
4: c – double Input
5: d – double Input

On entry: the parameters a, b, c and d which occur in the quadrature formulae. c is not used if
quad type ¼ Nag Quad Gauss Legendre; d is not used unless
quad type ¼ Nag Quad Gauss Jacobi, Nag Quad Gauss Jacobi Adjusted,
Nag Quad Gauss Rational or Nag Quad Gauss Rational Adjusted. For some rules c and d must
not be too large (see Section 6).

Constraints:

if quad type ¼ Nag Quad Gauss Legendre, a < b;
if quad type ¼ Nag Quad Gauss Jacobi or Nag Quad Gauss Jacobi Adjusted,
a < b and c > �1:0 and d > �1:0;
if quad type ¼ Nag Quad Gauss Exponential or Nag Quad Gauss Exponential Adjusted,
a < b and c > �1:0;
if quad type ¼ Nag Quad Gauss Laguerre or Nag Quad Gauss Laguerre Adjusted,
b 6¼ 0:0 and c > �1:0;
if quad type ¼ Nag Quad Gauss Hermite or Nag Quad Gauss Hermite Adjusted,
b > 0:0 and c > �1:0;
if quad type ¼ Nag Quad Gauss Rational or Nag Quad Gauss Rational Adjusted,
aþ b 6¼ 0:0 and c > �1:0 and d > cþ 1:0.

6: n – Integer Input

On en t ry : n, t h e n u m b e r o f w e i g h t s a n d a b s c i s s a e t o b e r e t u r n e d . I f
quad type ¼ Nag Quad Gauss Exponential Adjusted or Nag Quad Gauss Hermite Adjusted and
c 6¼ 0:0, an odd value of n may raise problems (see fail:code ¼ NE_INDETERMINATE).

Constraint: n > 0.

7: weight½n� – double Output

On exit: the n weights.

8: abscis½n� – double Output

On exit: the n abscissae.

9: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_CONSTRAINT

On entry, a, b, c, or d is not in the allowed range: a ¼ valueh i, b ¼ valueh i c ¼ valueh i,
d ¼ valueh i and quad type ¼ valueh i.

d01tcc NAG Library Manual

d01tcc.4 Mark 25

NE_CONVERGENCE

The algorithm for computing eigenvalues of a tridiagonal matrix has failed to converge.

NE_INDETERMINATE

Exponential Gauss or Gauss–Hermite adjusted weights with n odd and c 6¼ 0:0.

Theoretically, in these cases:

for c > 0:0, the central adjusted weight is infinite, and the exact function f xð Þ is zero at the
central abscissa;

for c < 0:0, the central adjusted weight is zero, and the exact function f xð Þ is infinite at the
central abscissa.

In either case, the contribution of the central abscissa to the summation is indeterminate.

In practice, the central weight may not have overflowed or underflowed, if there is sufficient
rounding error in the value of the central abscissa.

The weights and abscissa returned may be usable; you must be particularly careful not to ‘round’
the central abscissa to its true value without simultaneously ‘rounding’ the central weight to zero
or 1 as appropriate, or the summation will suffer. It would be preferable to use normal weights, if
possible.

Note: remember that, when switching from normal weights to adjusted weights or vice versa,
redefinition of f xð Þ is involved.

NE_INT

On entry, n ¼ valueh i.
Constraint: n > 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_TOO_BIG

One or more of the weights are larger than rmax, the largest floating point number on this
computer (see nag_real_largest_number (X02ALC)): rmax ¼ valueh i.
Possible solutions are to use a smaller value of n; or, if using adjusted weights to change to
normal weights.

NE_TOO_SMALL

One or more of the weights are too small to be distinguished from zero on this machine.
The underflowing weights are returned as zero, which may be a usable approximation.
Possible solutions are to use a smaller value of n; or, if using normal weights, to change to
adjusted weights.

7 Accuracy

The accuracy depends mainly on n, with increasing loss of accuracy for larger values of n. Typically,
one or two decimal digits may be lost from machine accuracy with n ’ 20, and three or four decimal
digits may be lost for n ’ 100.

d01 – Quadrature d01tcc

Mark 25 d01tcc.5

8 Parallelism and Performance

nag_quad_1d_gauss_wgen (d01tcc) is not threaded by NAG in any implementation.

nag_quad_1d_gauss_wgen (d01tcc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The major portion of the time is taken up during the calculation of the eigenvalues of the appropriate
tridiagonal matrix, where the time is roughly proportional to n3.

10 Example

This example returns the abscissae and (adjusted) weights for the seven-point Gauss–Laguerre formula.

10.1 Program Text

/* nag_quad_1d_gauss_wgen (d01tcc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 23, 2011.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd01.h>

int main(void)
{

Integer exit_status = 0;
Integer i, n;
double a, b, c, d;
Nag_QuadType quadtype;
NagError fail;
double *abscis = 0, *weight = 0;

INIT_FAIL(fail);

printf("nag_quad_1d_gauss_wgen (d01tcc) Example Program Results\n");
/* Skip heading in data file */

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif
/* Input a, b, c, d and n */

#ifdef _WIN32
scanf_s("%lf %lf %lf %lf", &a, &b, &c, &d);

#else
scanf("%lf %lf %lf %lf", &a, &b, &c, &d);

#endif
#ifdef _WIN32

scanf_s("%"NAG_IFMT"%*[^\n] ", &n);
#else

scanf("%"NAG_IFMT"%*[^\n] ", &n);
#endif

quadtype = Nag_Quad_Gauss_Laguerre_Adjusted;

if (!(abscis = NAG_ALLOC(n, double)) ||

d01tcc NAG Library Manual

d01tcc.6 Mark 25

!(weight = NAG_ALLOC(n, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* nag_quad_1d_gauss_wgen (d01tcc).
* Calculation of weights and abscissae for
* Gaussian quadrature rules, general choice of rule.
*/

nag_quad_1d_gauss_wgen(quadtype, a, b, c, d, n, weight, abscis, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_quad_1d_gauss_wgen (d01tcc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

printf("\nLaguerre formula, %3"NAG_IFMT " points\n\n"
" Abscissae Weights\n\n", n);

for (i = 0; i < n; i++)
{

printf("%15.5e", abscis[i]);
printf("%15.5e\n", weight[i]);

}
printf("\n");

END:
NAG_FREE(abscis);
NAG_FREE(weight);

return exit_status;
}

10.2 Program Data

nag_quad_1d_gauss_wgen (d01tcc) Example Program Data
0.0 1.0 0.0 0.0
7

10.3 Program Results

nag_quad_1d_gauss_wgen (d01tcc) Example Program Results

Laguerre formula, 7 points

Abscissae Weights

1.93044e-01 4.96478e-01
1.02666e+00 1.17764e+00
2.56788e+00 1.91825e+00
4.90035e+00 2.77185e+00
8.18215e+00 3.84125e+00
1.27342e+01 5.38068e+00
1.93957e+01 8.40543e+00

d01 – Quadrature d01tcc

Mark 25 d01tcc.7

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-5 0 5 10 15 20 25

W
ei

gh
ts

 a
t

A
bs

ci
ss

ae

x

Example Program
Abscissae and Weights for the 7-point Gauss-Laguerre Formula (a=0, b=1)

d01tcc NAG Library Manual

d01tcc.8 (last) Mark 25

	d01tcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Davis and Rabinowitz (1975)
	Golub and Welsch (1969)
	Stroud and Secrest (1966)

	5 Arguments
	quad_type
	a
	b
	c
	d
	n
	weight
	abscis
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CONSTRAINT
	NE_CONVERGENCE
	NE_INDETERMINATE
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_TOO_BIG
	NE_TOO_SMALL

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

