
NAG Library Function Document

nag_quad_1d_gen_vec_multi_rcomm (d01rac)

Note: this function uses optional arguments to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional arguments, you need only
read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings please
refer to Section 11 for a detailed description of the specification of the optional arguments.

1 Purpose

nag_quad_1d_gen_vec_multi_rcomm (d01rac) is a general purpose adaptive integrator which calculates
an approximation to a vector of definite integrals F over a finite range a; b½ �, given the vector of
integrands f xð Þ.

F ¼
Z b

a

f xð Þdx

If the same subdivisions of the range are equally good for functions f1 xð Þ and f2 xð Þ, because f1 xð Þ and
f2 xð Þ have common areas of the range where they vary slowly and where they vary quickly, then we say
that f1 xð Þ and f2 xð Þ are ‘similar’. nag_quad_1d_gen_vec_multi_rcomm (d01rac) is particularly effective
for the integration of a vector of similar functions.

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_quad_1d_gen_vec_multi_rcomm (Integer *irevcm, Integer ni, double a,
double b, Integer *sid, Integer needi[], double x[], Integer lenx,
Integer *nx, const double fm[], Integer ldfm, double dinest[],
double errest[], const Integer iopts[], const double opts[],
Integer icom[], Integer licom, double com[], Integer lcom,
NagError *fail)

3 Description

nag_quad_1d_gen_vec_multi_rcomm (d01rac) is an extension to various QUADPACK routines,
including QAG, QAGS and QAGP. The extensions made allow multiple integrands to be evaluated
simultaneously, using a vectorized interface and reverse communication.

The quadrature scheme employed by nag_quad_1d_gen_vec_multi_rcomm (d01rac) can be chosen by
you. Six Gauss–Kronrod schemes are available. The algorithm incorporates a global acceptance criterion
(as defined by Malcolm and Simpson (1976)), optionally together with the �-algorithm (see Wynn
(1956)) to perform extrapolation. The local error estimation is described in Piessens et al. (1983).

nag_quad_1d_gen_vec_multi_rcomm (d01rac) is the integration function in the suite of functions
nag_quad_1d_gen_vec_multi_rcomm (d01rac) and nag_quad_1d_gen_vec_multi_dimreq (d01rcc). It also
uses optional arguments, which can be set and queried using the functions nag_quad_opt_set (d01zkc)
and nag_quad_opt_get (d01zlc) respectively. The options available are described in Section 11.

First, the option arrays iopts and opts must be initialized using nag_quad_opt_set (d01zkc). Thereafter
any required options must be set before calling nag_quad_1d_gen_vec_multi_rcomm (d01rac), or the
function nag_quad_1d_gen_vec_multi_dimreq (d01rcc).

A typical usage of this suite of functions is (in pseudo-code for clarity),

Setup phase

liopts = 100
lopts = 100
allocate(iopts(liopts),opts(lopts))

d01 – Quadrature d01rac

Mark 25 d01rac.1



d01zkc(’initialize = d01rac’,iopts,liopts,opts,lopts,fail)
d01zkc(’option = value’,iopts,liopts,opts,lopts,fail)
...
d01rcc(ni,lenxrq,ldfmrq,sdfmrq,licmin,licmax,lcmin,lcmax,

iopts,opts,fail)
lenx = lenxrq
ldfm = ldfmrq
sdfm = sdfmrq
licom = licmax
lcom = lcmax
allocate(icom(licom),com(lcom),x(lenx),fm(ldfm,sdfm),needi(ni),

dinest(ni),errest(ni))

Solve phase

irevcm = 1
while irevcm6¼0

d01rac(irevcm,ni,a,b,sid,needi,x,lenx,nx,fm,ldfm,
dinest,errest,iopts,opts,icom,licom,com,
lcom,fail)

select case(irevcm)
case(11)

Initial solve phase
evaluate fm(1:ni,1:nx)

case(12)
Adaptive solve phase
evaluate fm(needi(1:ni)=1,1:nx)

case(0)
investigate fail

end select
end while

Diagnostic phase

d01zlc(’option’,ivalue,rvalue,cvalue,optype,iopts,opts,fail)
...

During the initial solve phase, the first estimation of the definite integral and error estimate is constructed
over the interval a; b½ �. This will have been divided into spri level 1 segments, where spri is the number
of Primary Divisions, and will use any provided break-points if Primary Division Mode ¼ MANUAL.

Once a complete integral estimate over a; b½ � is available, i.e., after all the estimates for the level 1
segments have been evaluated, the function enters the adaptive phase. The estimated errors are tested
against the requested tolerances �a and �r, corresponding to the Absolute Tolerance and
Relative Tolerance respectively. Should this test fail, and additional subdivision be allowed, a segment
is selected for subdivision, and is subsequently replaced by two new segments at the next level of
refinement. How this segment is chosen may be altered by setting Prioritize Error to either favour the
segment with the maximum error, or the segment with the lowest level supporting an unacceptable
(although potentially non-maximal) error. Up to max sdiv subdivisions are allowed if sufficient memory is
provided, where max sdiv is the value of Maximum Subdivisions.

Once a sufficient number of error estimates have been constructed for a particular integral, the function
may optionally use Extrapolation to attempt to accelerate convergence. This may significantly lower the
amount of work required for a given integration. To minimize the risk of premature convergence from
extrapolation, a safeguard �safe can be set using Extrapolation Safeguard, and the extrapolated solution
will only be considered if �safe�q � �ex , where �q and �ex are the estimated error directly from the
quadrature and from the extrapolation respectively. If extrapolation is successful for the computation of
integral j, the extrapolated solution will be returned in dinest½j� 1� on completion of
nag_quad_1d_gen_vec_multi_rcomm (d01rac). Otherwise the direct solution will be returned in
dinest½j� 1�. This is indicated by the value of needi½j� 1� on completion.

d01rac NAG Library Manual

d01rac.2 Mark 25



4 References

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

Piessens R (1973) An algorithm for automatic integration Angew. Inf. 15 399–401

Piessens R, de Doncker–Kapenga E, Überhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer–Verlag

Wynn P (1956) On a device for computing the em Snð Þ transformation Math. Tables Aids Comput. 10 91–
96

5 Arguments

Note: this function uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument irevcm. Between intermediate exits and re-
entries, all arguments other than irevcm, needi and fm must remain unchanged.

Where FM j; ið Þ appears in this document it refers to the array element fm i� 1ð Þ � ldfmþ j� 1½ �.

1: irevcm – Integer * Input/Output

On initial entry: irevcm ¼ 1.

irevcm ¼ 1
Sets up data structures in icom and com and starts a new integration.

Constraint: irevcm ¼ 1 on initial entry.

On intermediate exit: irevcm ¼ 11 or 12.

irevcm requests the integrands fj xið Þ be evaluated for all required j 2 1; . . . ; ni as indicated by
needi, and at all the points xi, for i ¼ 1; 2; . . . ; nx. Abscissae xi are provided in x½i� 1� and fj xið Þ
must be returned in FM j; ið Þ.
During the initial solve phase:

irevcm ¼ 11
Function values are required to construct the initial estimates of the definite integrals.

If needi½j� 1� ¼ 1, fj xið Þ must be supplied in FM j; ið Þ. This will be the case unless you have
abandoned the evaluation of specific integrals on a previous call.

If needi½j� 1� ¼ 0, you have previously abandoned the evaluation of integral j, and hence should
not supply the value of fj xið Þ.
dinest and errest contain incomplete information during this phase. As such you should not
abandon the evaluation of any integrals during this phase unless you do not require their estimate.

If irevcm is set to a negative value during this phase, needi½j � 1�, for j ¼ 1; 2; . . . ; ni, will be set
to this negative value and fail:code ¼ NE_USER_STOP will be returned.

During the adaptive solve phase:

irevcm ¼ 12
Function values are required to improve the estimates of the definite integrals.

If needi½j� 1� ¼ 0, any evaluation of fj xið Þ will be discarded, so there is no need to provide
them.

If needi½j� 1� ¼ 1, fj xið Þ must be provided in FM j; ið Þ.
If needi½j� 1� ¼ 2, 3 or 4, the current error estimate of integral j does not require integrand j to
be evaluated and provided in FM j; ið Þ. Should you choose to, integrand j can be evaluated in
which case needi½j� 1� must be set to 1.

dinest and errest contain complete information during this phase.

d01 – Quadrature d01rac

Mark 25 d01rac.3



If irevcm is set to a negative value during this phase fail:code ¼ NE_ACCURACY or
NE_QUAD_BAD_SUBDIV_INT will be returned and the elements of needi will reflect the
current state of the adaptive process.

On intermediate re-entry: irevcm should normally be left unchanged. However, if irevcm is set to
a negative value, nag_quad_1d_gen_vec_multi_rcomm (d01rac) will terminate, (see irevcm ¼ 11
and irevcm ¼ 12 above).

On final exit: irevcm ¼ 0.

irevcm ¼ 0
Indicates the algorithm has completed.

2: ni – Integer Input

On entry: ni, the number of integrands.

3: a – double Input

On entry: a, the lower bound of the domain.

4: b – double Input

On entry: b, the upper bound of the domain.

If b� aj j < 10�, where � is the machine precision (see nag_machine_precision (X02AJC)), then
nag_quad_1d_gen_vec_multi_rcomm (d01rac) will return dinest½j � 1� ¼ errest½j � 1� ¼ 0:0, for
j ¼ 1; 2; . . . ; ni.

5: sid – Integer * Output

For advanced users.

On intermediate exit: sid identifies a specific set of abscissae, x, returned during the integration
process. When a new set of abscissae are generated the value of sid is incremented by 1.
Advanced users may store calculations required for an identified set x, and reuse them should
nag_quad_1d_gen_vec_multi_rcomm (d01rac) return the same value of sid, i.e., the same set of
abscissae was used.

6: needi½ni� – Integer Input/Output

On initial entry: need not be set.

On intermediate exit: needi½j� 1� indicates what action must be taken for integral j ¼ 1; 2; . . .ni
(see irevcm).

needi½j� 1� ¼ 0
Do not provide fj xið Þ. Any provided values will be ignored.

needi½j� 1� ¼ 1
The values fj xið Þ must be provided in FM j; ið Þ, for i ¼ 1; 2; . . . ; nx.

needi½j� 1� ¼ 2
The values fj xið Þ are not required, however the error estimate for integral j is still above
the requested tolerance. If you wish to provide values for the evaluation of integral j, set
needi½j� 1� ¼ 1, and supply fj xið Þ in FM j; ið Þ, for i ¼ 1; 2; . . . ; nx.

needi½j� 1� ¼ 3
The error estimate for integral j cannot be improved to below the requested tolerance
directly, either because no more new splits may be performed due to exhaustion, or due to
the detection of extremely bad integrand behaviour. However, providing the values fj xið Þ
may still lead to some improvement, and may lead to an acceptable error estimate indirectly
using Wynn’s epsilon algorithm. If you wish to provide values for the evaluation of integral
j, set needi½j� 1� ¼ 1, and supply fj xið Þ in FM j; ið Þ, for i ¼ 1; 2; . . . ; nx.

d01rac NAG Library Manual

d01rac.4 Mark 25



needi½j� 1� ¼ 4
The error estimate of integral j is below the requested tolerance. If you believe this to be
false, if for example the result in dinest½j� 1� is greatly different to what you may expect,
you may force the algorithm to re-evaluate this conclusion by including the evaluations of
integrand j at xi, for i ¼ 1; 2; . . . ; nx, and setting needi½j� 1� ¼ 1. Integral and error
estimation will be performed again during the next iteration.

On intermediate re-entry: needi½j� 1� may be used to indicate what action you have taken for
integral j.

needi½j� 1� ¼ 1
You have provided the values fj xið Þ in FM j; ið Þ, for i ¼ 1; 2; . . . ; nx.

needi½j� 1� < 0
You are abandoning the evaluation of integral j. The current values of dinest½j� 1� and
errest½j� 1� will be returned on final completion.

Otherwise you have not provided the value fj xið Þ.
On final exit: needi½j� 1� indicates the final state of integral j.

needi½j� 1� ¼ 0
The error estimate for Fj is below the requested tolerance.

needi½j� 1� ¼ 1
The error estimate for Fj is below the requested tolerance after extrapolation.

needi½j� 1� ¼ 2
The error estimate for Fj is above the requested tolerance.

needi½j� 1� ¼ 3
The error estimate for Fj is above the requested tolerance, and extremely bad behaviour of
integral j has been detected.

needi½j� 1� < 0
You prohibited further evaluation of integral j.

7: x½lenx� – double Input/Output

On initial entry: if Primary Division Mode ¼ AUTOMATIC, x need not be set. This is the
default behaviour.

If Primary Division Mode ¼ MANUAL, x is used to supply a set of initial ‘break-points’ inside
the domain of integration. Specifically, x½i� 1� must contain a break-point x0

i , for
i ¼ 1; 2; . . . ; spri � 1

� �
, where spri is the number of Primary Divisions.

Constraint: if break-points are supplied, x0
i 2 a; bð Þ, x0

i � a
�� �� > 10:0�, x0

i � b
�� �� > 10:0�, for

i ¼ 1; 2; . . . ; spri � 1
� �

.

On intermediate exit: x½i � 1� is the abscissa xi, for i ¼ 1; 2; . . . ; nx, at which the appropriate
integrals must be evaluated.

8: lenx – Integer Input

On entry: the dimension of the array x. Currently lenx ¼ max 122; spri � 1
� �

will be sufficient for
all cases.

Constraint: lenx � lenxrq, where lenxrq is dependent upon the options currently set (see
Section 11). lenxrq is returned as lenxrq from nag_quad_1d_gen_vec_multi_dimreq (d01rcc).

9: nx – Integer * Input/Output

On initial entry: need not be set.

On intermediate exit: nx, the number of abscissae at which integrands are required.

On intermediate re-entry: must not be changed.

d01 – Quadrature d01rac

Mark 25 d01rac.5



10: fm½dim� – const double Input

Note: the dimension, dim, of the array fm must be at least ldfm� sdfmrq, where sdfmrq is
dependent upon ni and the options currently set. sdfmrq is returned as sdfmrq from
nag_quad_1d_gen_vec_multi_dimreq (d01rcc). If default options are chosen, sdfmrq ¼ lenxrq.

On initial entry: need not be set.

On intermediate re-entry: if indicated by needi½j� 1� you must supply the values fj xið Þ in
FM j; ið Þ, for i ¼ 1; 2; . . . ; nx and j ¼ 1; 2; . . . ; ni.

11: ldfm – Integer Input

On entry: the stride separating matrix row elements in the array fm.

Constraint: ldfm � ldfmrq, where ldfmrq is dependent upon ni and the options currently set.
ldfmrq is returned as ldfmrq from nag_quad_1d_gen_vec_multi_dimreq (d01rcc). If default
options are chosen, ldfmrq ¼ ni, implying ldfm � ni.

12: dinest½ni� – double Input/Output

dinest½j� 1� contains the current estimate of the definite integral Fj.

On initial entry: need not be set.

On intermediate re-entry: must not be altered.

On exit: contains the current estimates of the ni integrals. If irevcm ¼ 0, this will be the final
solution.

13: errest½ni� – double Input/Output

errest½j� 1� contains the current error estimate of the definite integral Fj.

On initial entry: need not be set.

On intermediate re-entry: must not be altered.

On exit: contains the current error estimates for the ni integrals. If irevcm ¼ 0, errest contains the
final error estimates of the ni integrals.

14: iopts½100� – const Integer Communication Array
15: opts½100� – const double Communication Array

The arrays iopts and opts MUST NOT be altered between calls to any of the functions
nag_quad_1d_gen_vec_multi_rcomm (d01rac), nag_quad_1d_gen_vec_multi_dimreq (d01rcc),
nag_quad_opt_set (d01zkc) and nag_quad_opt_get (d01zlc).

16: icom½licom� – Integer Communication Array

icom contains details of the integration procedure, including information on the integration of the
ni integrals over individual segments. This data is stored sequentially in the order that segments
are created. For further information see Section 9.1.

17: licom – Integer Input

On entry: the dimension of the array icom.

Constraint: licom � licmin, where licmin is dependent upon ni and the current options set.
licmin is returned as licmin from nag_quad_1d_gen_vec_multi_dimreq (d01rcc). If the default
options are set, then licmin ¼ 55þ 6� ni. Larger values than licmin are recommended if you
anticipate that any integrals will require the domain to be further subdivided.

The maximum value that may be required, licmax, is returned as licmax from
nag_quad_1d_gen_vec_multi_dimreq (d01rcc). If default options are chosen, except for possibly
increasing the value of spri, then licmax ¼ 50þ 5� niþ spri þ 100

� �
� 5þ nið Þ.

d01rac NAG Library Manual

d01rac.6 Mark 25



18: com½lcom� – double Communication Array

com contains details of the integration procedure, including information on the integration of the
ni integrals over individual segments. This data is stored sequentially in the order that segments
are created. For further information see Section 9.1.

19: lcom – Integer Input

On entry: the dimension of the array com.

Constraint: lcom > lcmin, where lcmin is dependent upon ni, spri and the current options set.
lcmin is returned as lcmin from nag_quad_1d_gen_vec_multi_dimreq (d01rcc). If default options
are set, then lcmin ¼ 96þ 12� ni. Larger values are recommended if you anticipate that any
integrals will require the domain to be further subdivided.

Given the current options and arguments, the maximum value, lcmax, of lcom that may be
required, is returned as lcmax from nag_quad_1d_gen_vec_multi_dimreq (d01rcc). If default
options are chosen, lcmax ¼ 94þ 9� niþ ni=2d e þ spri þ 100

� �
� 2þ ni=2d e þ 2� nið Þ.

20: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ACCURACY

At least one error estimate exceeded the requested tolerances.

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

irevcm had an illegal value.
On entry, irevcm ¼ valueh i.
On entry, ni ¼ valueh i.
Constraint: ni � 1.

NE_INT_2

ldfm < ldfmrq. If default options are chosen, this implies ldfm < ni.
On entry, ldfm ¼ valueh i.
Constraint: ldfm � valueh i.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_INVALID_ARRAY

On entry, one of icom and com has become corrupted.

d01 – Quadrature d01rac

Mark 25 d01rac.7



NE_INVALID_OPTION

Either the option arrays iopts and opts have not been initialized for
nag_quad_1d_gen_vec_multi_rcomm (d01rac), or they have become corrupted.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_QUAD_BAD_SUBDIV_INT

Extremely bad behaviour was detected for at least one integral.

Extremely bad behaviour was detected for at least one integral. At least one other integral error
estimate was above the requested tolerance.

NE_QUAD_BRKPTS_INVAL

On entry, Primary Division Mode ¼ MANUAL and at least one supplied break-point in x is
outside of the domain of integration.

NE_TOO_SMALL

lcom is insufficient for additional subdivision.
On entry, lcom ¼ valueh i.
Constraint: lcom � valueh i.
lenx is insufficient for the chosen options.
On entry, lenx ¼ valueh i.
Constraint: lenx � valueh i.
licom is insufficient for additional subdivision.
On entry, licom ¼ valueh i.
Constraint: licom � valueh i.

NE_USER_STOP

Evaluation of all integrals has been stopped during the initial phase.

7 Accuracy

nag_quad_1d_gen_vec_multi_rcomm (d01rac) cannot guarantee, but in practice usually achieves, the
following accuracy for each integral Fj:

Fj � dinest½j� 1�
�� �� � tol

where

tol ¼ max �a; �r � Fj
�� ��� �

�a and �r are the error tolerances Absolute Tolerance and Relative Tolerance respectively. Moreover, it
returns errest, the entries of which in normal circumstances satisfy,

Fj � dinest½j� 1�
�� �� � errest½j� 1� � tol:

8 Parallelism and Performance

nag_quad_1d_gen_vec_multi_rcomm (d01rac) is threaded by NAG for parallel execution in multi-
threaded implementations of the NAG Library.

nag_quad_1d_gen_vec_multi_rcomm (d01rac) makes calls to BLAS and/or LAPACK routines, which
may be threaded within the vendor library used by this implementation. Consult the documentation for
the vendor library for further information.

d01rac NAG Library Manual

d01rac.8 Mark 25



Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time required by nag_quad_1d_gen_vec_multi_rcomm (d01rac) is usually dominated by the time
required to evaluate the values of the integrands fj.

nag_quad_1d_gen_vec_multi_rcomm (d01rac) will be most efficient if any badly behaved integrands
provided have irregularities over similar subsections of the domain. For example, evaluation of the
integrals,

Z 1

0

log xð Þ
x�

1
2

x2

0
@

1
Adx

will be quite efficient, as the irregular behaviour of the first two integrands is at x ¼ 0. On the contrary,
the evaluation of the integrals,

Z 1

0

log xð Þ
log 1� xð Þ

� �
dx

will be less efficient, as the two integrands have singularities at opposite ends of the domain, which will
result in subdivisions which are only of use to one integrand. In such cases, it will be more efficient to
use two sets of calls to nag_quad_1d_gen_vec_multi_rcomm (d01rac).

nag_quad_1d_gen_vec_multi_rcomm (d01rac) will flag extremely bad behaviour if a sub-interval �k with
bounds a�k ; b�k½ � satisfying b�k � a�kj j < max �a; �r � b� aj jð Þ has a local error estimate greater than the
requested tolerance for at least one integral. The values �a and �r can be set through the optional
arguments Absolute Interval Minimum and Relative Interval Minimum respectively.

9.1 Details of the Computation

This section is recommended for expert users only. It describes the contents of the arrays com and icom
upon exit from nag_quad_1d_gen_vec_multi_rcomm (d01rac) with fail:code ¼ NE_NOERROR,
NE_ACCURACY or NE_QUAD_BAD_SUBDIV_INT, and provided at least one iteration completed,
failure due to insufficient licom or lcom.

The arrays icom and com contain details of the integration, including various scalars, one-dimensional
arrays, and (effectively) two-dimensional arrays. The dimensions of these arrays vary depending on the
arguments and options used and the progress of the algorithm. Here we describe some of these details,
including how and where they are stored in icom and com.

Scalar quantities:

The indices in icom including the following scalars are available via query only options, see
Section 11.2. For example, Ildi is the integer value returned by the option Index LDI. Note the indices
returned start at 1 and so the corresponding zero based indices require 1 to be subtracted as shown
below. This is also true for the location of arrays within icom and com and consequently the indices of
the elements of the one- and two-dimensional arrays must be modified as detailed below.

ldi The leading dimension of the two-dimensional integer arrays stored in icom detailed below.
ldi ¼ icom½Ildi � 1�.

ldr The leading dimension of the two-dimensional real arrays stored in com detailed below.
ldr ¼ icom½Ildr � 1�.

nsdiv The number of segments that have been subdivided during the adaptive process.
nsdiv ¼ icom½Insdiv � 1�.

nseg The total number of segments formed.
nseg ¼ 2nsdiv þ spri.
nseg ¼ icom½Inseg � 1�.

d01 – Quadrature d01rac

Mark 25 d01rac.9



dsp The reference of the first element of the array ds stored in com.
dsp ¼ icom½Idsp � 1�.

esp The reference of the first element of the array es stored in com.
esp ¼ icom½Iesp � 1�.

evalsp The reference of the first element of the array evals stored in icom.
evalsp ¼ icom½Ievalsp � 1�.

fcp The reference of the first element of the array fcount stored in icom.
fcp ¼ icom½Ifcp � 1�.

sinforp The reference of the first element of the array sinfor stored in com.
sinforp ¼ icom½Isinforp � 1�.

sinfoip The reference of the first element of the array sinfoi stored in icom.
sinfoip ¼ icom½Isinfoip � 1�.

One-dimensional arrays:

fcount ni½ �
fcount½0� ¼ icom½fcp� 1�.

fcount½j� 1� contains the number of different approximations of integral j calculated, for
j ¼ 1; 2; . . . ; ni.

Two-dimensional arrays:

sinfoi 5� nseg½ �
sinfoi½0� ¼ icom½sinfoip� 1�.
sinfoi contains information about the hierarchy of splitting.

sinfoi½ k � 1ð Þ � ldi� contains the split identifier for segment k, for k ¼ 1; 2; . . . ;nseg.

sinfoi½ k � 1ð Þ � ldi þ 1� contains the parent segment number of segment k (i.e., the segment was split to
create segment k), for k ¼ 1; 2; . . . ; nseg.

sinfoi½ k� 1ð Þ � ldi þ 2� and sinfoi½ k � 1ð Þ � ldi þ 3� contain the segment numbers of the two child
segments formed from segment k, if segment k has been split. If segment k has not been split, these will
be negative.

sinfoi½ k � 1ð Þ � ldi þ 4� contains the level at which the segment exists, corresponding to na þ 1, where
na is the number of ancestor segments of segment k, for k ¼ 1; 2; . . . ;nseg. A negative level indicates
that segment k will not be split further, the level is then given by the absolute value of
sinfoi½ k � 1ð Þ � ldi þ 4�.
sinfor 2� nseg½ �

sinfor ½0� ¼ com½sinforp� 1�.
sinfor contains the bounds of each segment.

sinfor ½ k � 1ð Þ � ldr � contains the lower bound of segment k, for k ¼ 1; 2; . . . ; nseg.

sinfor ½ k � 1ð Þ � ldr þ 1� contains the upper bound of segment k, for k ¼ 1; 2; . . . ;nseg.

evals ni � nseg½ �
evals½0� ¼ icom½evalsp� 1�.

evals contains information to indicate whether an estimate of the integral j has been obtained over
segment k, and if so whether this evaluation still contributes to the direct estimate of Fj , for
j ¼ 1; 2; . . . ; ni and k ¼ 1; 2; . . . ;nseg.

evals½ k � 1ð Þ � ldi þ j � 1� ¼ 0 indicates that integral j has not been evaluated over segment k.

evals½ k � 1ð Þ � ldi þ j � 1� ¼ 1 indicates that integral j has been evaluated over segment k, and that this
evaluation contributes to the direct estimate of Fj.

evals½ k � 1ð Þ � ldi þ j � 1� ¼ 2 indicates that integral j has been evaluated over segment k, that this
evaluation contributes to the direct estimate of Fj, and that you have requested no further evaluation of
this integral at this segment by setting needi½j� 1� < 0.

d01rac NAG Library Manual

d01rac.10 Mark 25



evals½ k � 1ð Þ � ldi þ j � 1� ¼ 3 indicates that integral j has been evaluated over segment k, and this
evaluation no longer contributes to the direct estimate of Fj.

evals½ k � 1ð Þ � ldi þ j � 1� ¼ 4 indicates that integral j has been evaluated over segment k, that this
evaluation contributes to the direct estimate of Fj, and that this segment is too small for any further
splitting to be performed. Integral j also has a local error estimate over this segment above the requested
tolerance. Such segments cause nag_quad_1d_gen_vec_multi_rcomm (d01rac) to return fail:code ¼
NE_QUAD_BAD_SUBDIV_INT, indicating extremely bad behaviour.

evals½ k � 1ð Þ � ldi þ j � 1� ¼ 5 indicates that integral j has been evaluated over segment k, that this
evaluation contributes to the direct estimate of Fj, and that this segment is too small for any further
splitting to be performed. The local error estimate is however below the requested tolerance.

ds ni � nseg½ �
ds½0� ¼ com½dsp� 1�.

ds½ k � 1ð Þ � ldr þ j� 1� contains the definite integral estimate of the jth integral over the kth segment,
dsj;k , provided it has been evaluated, for j ¼ 1; 2; . . . ; ni and k ¼ 1; 2; . . . ; nseg.

es ni � nseg½ �
es½0� ¼ com½esp� 1�.

es½ k � 1ð Þ � ldr þ j� 1� contains the definite integral error estimate of the jth integral over the kth
segment, esj;k , provided it has been evaluated, for j ¼ 1; 2; . . . ; ni and k ¼ 1; 2; . . . ; nseg.

For each integral j, the direct approximation Dj of Fj, and its error estimate Ej, may be constructed as,

Fj � Dj ¼
P
Kj

dsj;k;

Fj �Dj

�� �� � Ej ¼
P
Kj

esj;k ;

w h e r e Kj i s t h e s e t o f a l l c o n t r i b u t i n g s e g m e n t s ,
Kj ¼ k j evals½ k � 1ð Þ � ldi þ j� 1� ¼ 1; 2; 4 or 5; 1 � k � nsegf g. Dj will have been returned in
dinest½j� 1�, unless extrapolation was successful, as indicated by needi½j� 1�.
Similarly, Ej will have been returned in errest½j� 1� unless extrapolation was successful, in which case
the error estimate from the extrapolation will have been returned. If for a given integral j one or more
contributing segments have unacceptable error estimates, it may be possible to improve the direct
approximation by replacing the contributions from these segments with more accurate estimates should
these be calculable by some means. Indeed for any segment �k 2 k, with lower bound a�k ¼ sinfor 1; �k

� �
and upper bound b�k ¼ sinfor 2; �k

� �
, one may alter the direct approximation Dj by the following,

dsnew
j;�k �

R b�k

a�k
fj xð Þ dx

Dj ¼
P
Kj

dsj;k � dsj;�k þ dsnew
j;�k :

The error estimate Ej may be altered similarly.

10 Example

This example integrates

F ¼
Z �

0

x sin 2xð Þ cos 15xð Þ
x2 sin 2xð Þ cos 50xð Þ

� �
dx:

10.1 Program Text

/* nag_quad_1d_gen_vec_multi_rcomm (d01rac) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 24, 2013.
*/

#include <stdio.h>

d01 – Quadrature d01rac

Mark 25 d01rac.11



#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd01.h>
#include <nagx01.h>

/* Print information on splitting and evaluations over subregions? */
Nag_Boolean disp_integration_info = Nag_TRUE;

static void display_integration_details(const Integer ni,
const Integer iopts[],
const double opts[],
const Integer icom[],
const double com[]);

static void display_option(const char *optstr, const Nag_VariableType optype,
const Integer ivalue, const double rvalue,
const char *cvalue);

int main(void)
{
#define FM(J,I) fm[(I-1)*ldfm + J-1]

/* Scalars */
int exit_status = 0;
Integer len_cvalue;
double a, b, rvalue;
Integer irevcm, ivalue, i, j, lcmax, lcmin, lcom, ldfm, ldfmrq,

lenx, lenxrq, licmax, licmin, licom, liopts, lopts, ni, nx,
sdfm, sdfmrq, sid;

/* Arrays */
char cvalue[17];
double *com = 0, *dinest = 0, *errest = 0, *fm = 0, *opts = 0, *x = 0;
Integer *icom = 0, *iopts = 0, *needi = 0;

/* NAG types */
Nag_VariableType optype;
NagError fail;

printf("nag_quad_1d_gen_vec_multi_rcomm (d01rac) Example Program Results"
"\n\n");

/* Setup phase.*/
/* Set problem parameters. */
ni = 2;
a = 0.0;
b = nag_pi;

liopts = 100;
lopts = 100;
if (

!(opts = NAG_ALLOC((lopts), double))||
!(iopts = NAG_ALLOC((liopts), Integer))
)

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

INIT_FAIL(fail);
/* Initialize option arrays using nag_quad_opt_set (d01zkc). */
nag_quad_opt_set("Initialize = nag_quad_1d_gen_vec_multi_rcomm",

iopts, liopts, opts, lopts, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_quad_opt_set (d01zkc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
nag_quad_opt_set("Quadrature Rule = gk41", iopts, liopts, opts, lopts, &fail);
nag_quad_opt_set("Absolute Tolerance = 1.0e-7", iopts, liopts, opts, lopts,

&fail);

d01rac NAG Library Manual

d01rac.12 Mark 25



nag_quad_opt_set("Relative Tolerance = 1.0e-7", iopts, liopts, opts, lopts,
&fail);

/* Determine required array dimensions for
* nag_quad_1d_gen_vec_multi_rcomm (d01rac) using
* nag_quad_1d_gen_vec_multi_dimreq (d01rcc).
*/

nag_quad_1d_gen_vec_multi_dimreq(ni, &lenxrq, &ldfmrq, &sdfmrq,
&licmin, &licmax, &lcmin, &lcmax,
iopts, opts, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_quad_1d_gen_vec_multi_dimreq (d01rcc).\n%s\n",

fail.message);
exit_status = 2;
goto END;

}
ldfm = ldfmrq;
sdfm = sdfmrq;
lenx = lenxrq;
licom = licmax;
lcom = lcmax;

/* Allocate remaining arrays.*/
if (

!(x = NAG_ALLOC((lenx), double))||
!(needi = NAG_ALLOC((ni), Integer))||
!(fm = NAG_ALLOC((ldfm)*(sdfm), double))||
!(dinest = NAG_ALLOC((ni), double))||
!(errest = NAG_ALLOC((ni), double))||
!(com = NAG_ALLOC((lcom), double))||
!(icom = NAG_ALLOC((licom), Integer))
)

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Solve phase.*/
/* Use nag_quad_1d_gen_vec_multi_rcomm (d01rac) to evaluate the
* definite integrals of:
* f_1 = (x*sin(2*x))*cos(15*x)
* f_2 = (x*sin(2*x))*(x*cos(50*x))
*/

INIT_FAIL(fail);
/* Set initial irevcm. */
irevcm = 1;
while (irevcm)

{
/* nag_quad_1d_gen_vec_multi_rcomm (d01rac).
* One-dimensional quadrature, adaptive, vectorized, multi-integral,
* reverse communication.
*/

nag_quad_1d_gen_vec_multi_rcomm(&irevcm, ni, a, b,
&sid, needi, x, lenx, &nx, fm, ldfm,
dinest, errest,
iopts, opts, icom, licom, com, lcom,
&fail);

switch (irevcm) {
case 11:

/* Initial returns.
* These will occur during the non-adaptive phase.
* All values must be supplied.
* dinest and errest do not contain approximations over the complete
* interval at this stage.
*/

for (i=1; i<=nx; i++) {
FM(2, i) = x[i-1]*sin(2.0*x[i-1]);
FM(1, i) = FM(2, i)*cos(15.0*x[i-1]);

d01 – Quadrature d01rac

Mark 25 d01rac.13



/* Complete f_2 calculation.*/
FM(2, i) = FM(2, i)*x[i-1]*cos(50.0*x[i-1]);

}

break;
case 12:

/* Intermediate returns.
* These will occur during the adaptive phase.
* All requested values must be supplied.
* dinest and errest contain approximations over the complete
* interval at this stage.
*/

if ( (needi[0]==1) && (needi[1]==1)) {
for (i=1; i<=nx; i++) {

FM(2, i) = x[i-1]*sin(2.0*x[i-1]);
FM(1, i) = FM(2, i)*cos(15.0*x[i-1]);
/* Complete f_2 calculation.*/
FM(2, i) = FM(2, i)*x[i-1]*cos(50.0*x[i-1]);

}
} else if (needi[0]==1) {

/* Only calculation of f_1 is requried.*/
for (i=1; i<=nx; i++)

FM(1, i) = (x[i-1]*sin(2.0*x[i-1]))*(cos(15.0*x[i-1]));
} else if (needi[1]==1) {

/* Only calculation of f_2 is requried.*/
for (i=1; i<=nx; i++)

FM(2, i) = (x[i-1]*sin(2.0*x[i-1]))*(x[i-1]*cos(50.0*x[i-1]));
}
break;

case 0:
/* Final return. Test fail.code.*/
switch (fail.code) {
case NE_NOERROR:

break;
case NE_ACCURACY:

printf("Warning: nag_quad_1d_gen_vec_multi_rcomm (d01rac) has "
"returned at \n least one error estimate exceeding the"
" requested tolerances\n");

break;
case NE_QUAD_BAD_SUBDIV_INT:

/* Useful information has been returned.*/
printf("Warning: nag_quad_1d_gen_vec_multi_rcomm (d01rac) has "

"detected \n extremely bad behaviour for at least"
" one integral\n");

break;
default: ;

/* An unrecoverable error has been detected.*/
printf("Error from nag_quad_1d_gen_vec_multi_rcomm (d01rac).\n%s\n",

fail.message);
exit_status = 3;
goto END;

}
}

}

/* Query some currently set options using nag_quad_opt_get (d01zlc). */
len_cvalue = 17;
nag_quad_opt_get("Quadrature rule", &ivalue, &rvalue, cvalue, len_cvalue,

&optype, iopts, opts, &fail);
display_option("Quadrature rule", optype, ivalue, rvalue, cvalue);
nag_quad_opt_get("Maximum Subdivisions", &ivalue, &rvalue, cvalue, len_cvalue,

&optype, iopts, opts, &fail);
display_option("Maximum Subdivisions", optype, ivalue, rvalue, cvalue);
nag_quad_opt_get("Extrapolation", &ivalue, &rvalue, cvalue, len_cvalue,

&optype, iopts, opts, &fail);
display_option("Extrapolation", optype, ivalue, rvalue, cvalue);
nag_quad_opt_get("Extrapolation Safeguard", &ivalue, &rvalue,

cvalue, len_cvalue, &optype, iopts, opts, &fail);
display_option("Extrapolation safeguard", optype, ivalue, rvalue, cvalue);

/* Print solution.*/

d01rac NAG Library Manual

d01rac.14 Mark 25



printf("\n Integral | needi | dinest | errest \n");
for ( j=1; j<=ni; j++)

printf(" %9"NAG_IFMT" %9"NAG_IFMT" %12.4e %12.4e\n",
j,needi[j-1],dinest[j-1],errest[j-1]);

/* Investigate integration strategy. */
if(disp_integration_info)

display_integration_details(ni,iopts,opts,icom,com);

END:
NAG_FREE(com);
NAG_FREE(dinest);
NAG_FREE(errest);
NAG_FREE(fm);
NAG_FREE(opts);
NAG_FREE(x);
NAG_FREE(icom);
NAG_FREE(iopts);
NAG_FREE(needi);
return exit_status;

}

static void display_integration_details(const Integer ni,
const Integer iopts[],
const double opts[],
const Integer icom[],
const double com[])

{
#define FCOUNT(J) icom[fcp + J-2]
#define EVALS(J,K) icom[evalsp +(K-1)*ldi + J-2]
#define SINFOI(L,K) icom[sinfoip +(K-1)*ldi + L-2]
#define DS(J,K) com[dsp + (K-1)*ldr + J-2]
#define ES(J,K) com[esp + (K-1)*ldr + J-2]
#define SINFOR(L,K) com[sinforp + (K-1)*ldr + L-2]

double lbnd, ubnd,rvalue;
Integer ldi,ldr,sinfoip,sinforp,evalsp,fcp,dsp,esp,nseg,nsdiv;
Integer child1, child2, j, k, level, parent, sid, index,len_cvalue;
char cvalue[17];
NagError fail;
Nag_VariableType optype;

/* Request communication array indices */
INIT_FAIL(fail);
len_cvalue = 17;
nag_quad_opt_get("Index nseg", &index, &rvalue, cvalue, len_cvalue,

&optype, iopts, opts, &fail);
nseg = icom[index-1];
nag_quad_opt_get("Index nsdiv", &index, &rvalue, cvalue, len_cvalue,

&optype, iopts, opts, &fail);
nsdiv = icom[index-1];
nag_quad_opt_get("Index ldi", &index, &rvalue, cvalue, len_cvalue,

&optype, iopts, opts, &fail);
ldi = icom[index-1];
nag_quad_opt_get("Index ldr", &index, &rvalue, cvalue, len_cvalue,

&optype, iopts, opts, &fail);
ldr = icom[index-1];
nag_quad_opt_get("Index fcp", &index, &rvalue, cvalue, len_cvalue,

&optype, iopts, opts, &fail);
fcp = icom[index-1];
nag_quad_opt_get("Index evalsp", &index, &rvalue, cvalue, len_cvalue,

&optype, iopts, opts, &fail);
evalsp = icom[index-1];
nag_quad_opt_get("Index sinfoip", &index, &rvalue, cvalue, len_cvalue,

&optype, iopts, opts, &fail);
sinfoip = icom[index-1];
nag_quad_opt_get("Index dsp", &index, &rvalue, cvalue, len_cvalue,

&optype, iopts, opts, &fail);
dsp = icom[index-1];
nag_quad_opt_get("Index esp", &index, &rvalue, cvalue, len_cvalue,

&optype, iopts, opts, &fail);
esp = icom[index-1];

d01 – Quadrature d01rac

Mark 25 d01rac.15



nag_quad_opt_get("Index sinforp", &index, &rvalue, cvalue, len_cvalue,
&optype, iopts, opts, &fail);

sinforp = icom[index-1];

printf("\n Information on integration:\n ni = %3"NAG_IFMT
", nseg = %3"NAG_IFMT", nsdiv = %3"NAG_IFMT".",ni,nseg,nsdiv);

for(j=1;j<=ni;j++)
printf("\n Integral %2"NAG_IFMT" total approximations: %3"NAG_IFMT".",

j,FCOUNT(j));
printf("\n\n Information on subdivision and evaluations over segments.\n");
for ( k=1; k<=nseg; k++) {

printf("\n");
sid = SINFOI(1, k);
parent = SINFOI(2, k);
child1 = SINFOI(3, k);
child2 = SINFOI(4, k);
level = SINFOI(5, k);
lbnd = SINFOR(1, k);
ubnd = SINFOR(2, k);
printf(" Segment %3"NAG_IFMT".\n Sid = %3"NAG_IFMT", Parent = "

"%3"NAG_IFMT", Level = %3"NAG_IFMT".\n", k, sid, parent, level);
if ( child1>0)

printf(" Children = (%3"NAG_IFMT",%3"NAG_IFMT").\n",child1,child2);
printf(" Bounds (%11.4e,%11.4e).\n", lbnd,ubnd);
for ( j=1; j<=ni; j++) {

if (EVALS(j, k)>0 && EVALS(j,k)<5) {
printf(" Integral %2"NAG_IFMT" approximation : %11.4e.\n", j,

DS(j,k));
printf(" Integral %2"NAG_IFMT" error estimate: %11.4e.\n", j,

ES(j,k));
if ( EVALS(j, k) == 3)

printf(" Integral %2"NAG_IFMT" evaluation has been superseded by "
"descendants.\n",j);

}
}

}
fflush(stdout);

}
static void display_option(const char *optstr, const Nag_VariableType optype,

const Integer ivalue, const double rvalue,
const char *cvalue)

{
/* Query optype and print the appropriate option values. */
switch (optype) {
case Nag_Integer:

printf(" %30s : %13"NAG_IFMT"\n", optstr, ivalue);
break;

case Nag_Real:
printf(" %30s : %13.4e\n", optstr, rvalue);
break;

case Nag_Character:
printf(" %30s : %16s\n", optstr, cvalue);
break;

case Nag_Integer_Additional:
printf(" %30s : %3"NAG_IFMT" %16s\n", optstr, ivalue, cvalue);
break;

case Nag_Real_Additional:
printf(" %30s : %13.4e %16s\n", optstr, rvalue, cvalue);
break;

default: ;
}
fflush(stdout);

}

10.2 Program Data

None.

d01rac NAG Library Manual

d01rac.16 Mark 25



10.3 Program Results

nag_quad_1d_gen_vec_multi_rcomm (d01rac) Example Program Results

Quadrature rule : GK41
Maximum Subdivisions : 50

Extrapolation : ON
Extrapolation safeguard : 1.0000e-12

Integral | needi | dinest | errest
1 0 -2.8431e-02 1.1234e-14
2 0 7.9083e-03 2.6600e-09

Information on integration:
ni = 2, nseg = 7, nsdiv = 3.
Integral 1 total approximations: 2.
Integral 2 total approximations: 4.

Information on subdivision and evaluations over segments.

Segment 1.
Sid = 1, Parent = 0, Level = 1.
Children = ( 2, 3).
Bounds ( 0.0000e+00, 3.1416e+00).
Integral 1 approximation : -2.8431e-02.
Integral 1 error estimate: 8.0372e-04.
Integral 1 evaluation has been superseded by descendants.
Integral 2 approximation : -3.6050e-01.
Integral 2 error estimate: 4.2596e+00.
Integral 2 evaluation has been superseded by descendants.

Segment 2.
Sid = 2, Parent = 1, Level = 2.
Children = ( 6, 7).
Bounds ( 0.0000e+00, 1.5708e+00).
Integral 1 approximation : -1.2285e-03.
Integral 1 error estimate: 2.8161e-15.
Integral 2 approximation : 1.9771e-03.
Integral 2 error estimate: 4.0437e-01.
Integral 2 evaluation has been superseded by descendants.

Segment 3.
Sid = 2, Parent = 1, Level = 2.
Children = ( 4, 5).
Bounds ( 1.5708e+00, 3.1416e+00).
Integral 1 approximation : -2.7202e-02.
Integral 1 error estimate: 8.4182e-15.
Integral 2 approximation : 5.9313e-03.
Integral 2 error estimate: 3.0259e+00.
Integral 2 evaluation has been superseded by descendants.

Segment 4.
Sid = 3, Parent = 3, Level = 3.
Bounds ( 1.5708e+00, 2.3562e+00).
Integral 2 approximation : 1.0922e-01.
Integral 2 error estimate: 7.9151e-10.

Segment 5.
Sid = 3, Parent = 3, Level = 3.
Bounds ( 2.3562e+00, 3.1416e+00).
Integral 2 approximation : -1.0329e-01.
Integral 2 error estimate: 1.6413e-09.

Segment 6.
Sid = 4, Parent = 2, Level = 3.
Bounds ( 0.0000e+00, 7.8540e-01).
Integral 2 approximation : 1.2343e-02.
Integral 2 error estimate: 5.2456e-11.

d01 – Quadrature d01rac

Mark 25 d01rac.17



Segment 7.
Sid = 4, Parent = 2, Level = 3.
Bounds ( 7.8540e-01, 1.5708e+00).
Integral 2 approximation : -1.0365e-02.
Integral 2 error estimate: 1.7467e-10.

11 Optional Arguments

This section can be skipped if you wish to use the default values for all optional arguments, otherwise,
the following is a list of the optional arguments available. A full description of each optional argument is
provided in Section 11.1.

Absolute Interval Minimum

Absolute Tolerance

Extrapolation

Extrapolation Safeguard

Maximum Subdivisions

Primary Division Mode

Primary Divisions

Prioritize Error

Quadrature Rule

Relative Interval Minimum

Relative Tolerance

The following optional arguments, see Section 11.2, may be utilized by expert users in conjunction with
the information provided in Section 9.1.

Index LDI

Index LDR

Index NSDIV

Index NSEG

Index FCP

Index EVALSP

Index DSP

Index ESP

Index SINFOIP

Index SINFORP

11.1 Description of the Optional Arguments

For each option, we give a summary line, a description of the optional argument and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value.

The following symbols represent various machine constants:

� represents the machine precision (see nag_machine_precision (X02AJC));

emax is the maximum exponent argument of the model of floating-point arithmetic, (see
nag_real_max_exponent (X02BLC));

Rmax represents the largest representable real value (see nag_real_largest_number (X02ALC)).

d01rac NAG Library Manual

d01rac.18 Mark 25



All options accept the value ‘DEFAULT’ in order to return single options to their default states.

Keywords and character values are case insensitive, however they must be separated by at least one
space.

Unsetable options will return the appropriate value when calling nag_quad_opt_get (d01zlc). They will
have no effect if passed to nag_quad_opt_set (d01zkc).

For nag_quad_1d_gen_vec_multi_rcomm (d01rac) the maximum length of the argument cvalue used by
nag_quad_opt_get (d01zlc) is 15.

Absolute Interval Minimum r Default ¼ 128:0�

r ¼ �a, the absolute lower limit for a segment to be considered for subdivision. See also
Relative Interval Minimum and Section 9.

Constraint: r � 128�.

Absolute Tolerance r Default ¼ 1024�

r ¼ �a, the absolute tolerance required. See also Relative Tolerance and Section 3.

Constraint: r � 0:0.

Extrapolation a Default ¼ ON

Activate or deactivate the use of the � algorithm (Wynn (1956)). Extrapolation often reduces the
number of iterations required to achieve the desired solution, but it can occasionally lead to premature
convergence towards an incorrect answer.

ON
Use extrapolation.

OFF
Disable extrapolation.

Extrapolation Safeguard r Default ¼ 1:0e�12

r ¼ �safe. If �q is the estimated error from the quadrature evaluation alone, and �ex is the error estimate
determined using extrapolation, then the extrapolated solution will only be accepted if �safe�q � �ex .

Maximum Subdivisions i Default ¼ 50

i ¼ max sdiv , the maximum number of subdivisions the algorithm may use in the adaptive phase, forming
at most an additional 2�max sdivð Þ segments.

Primary Divisions i Default ¼ 1

i ¼ spri, the number of initial segments of the domain a; b½ �. By default the initial segment is the entire
domain.

Constraint: 0 < i < 1000000.

Primary Division Mode a Default ¼ AUTOMATIC

Determines how the initial set of spri segments will be generated.

AUTOMATIC
nag_quad_1d_gen_vec_multi_rcomm (d01rac) will automatically generate spri segments of equal
size covering the interval a; b½ �.

MANUAL
nag_quad_1d_gen_vec_multi_rcomm (d01rac) will use the break-points x0

i , for
i ¼ 1; 2; . . . ; spri � 1, supplied in x on initial entry to generate the initial segments covering
a; b½ �. These may be supplied in any order, however it will be more efficient to supply them in

ascending (or descending if a > b) order. Repeated break-points are allowed, although this will
generate fewer initial segments.

d01 – Quadrature d01rac

Mark 25 d01rac.19



Note: an absolute bound on the size of an initial segment of 10:0� is automatically applied in all cases,
and will result in fewer initial subdivisions being generated if automatically generated or supplied break-
points result in segments smaller than this..

Prioritize Error a Default ¼ LEVEL

Indicates how new subdivisions of segments sustaining unacceptable local errors for integrals should be
prioritized.

LEVEL
Segments with lower level with unsatisfactory error estimates will be chosen over segments with
greater error on higher levels. This will probably lead to more integrals being improved in earlier
iterations of the algorithm, and hence will probably lead to fewer repeated returns (see argument
sid), and to more integrals being satisfactorily estimated if computational exhaustion occurs.

MAXERR
The segment with the worst overall error will be split, regardless of level. This will more rapidly
improve the worst integral estimates, although it will probably result in the fewest integrals being
improved in earlier iterations, and may hence lead to more repeated returns (see argument sid),
and potentially fewer integrals satisfying the requested tolerances if computational exhaustion
occurs.

Quadrature Rule a Default ¼ GK15

The basic quadrature rule to be used during the integration. Currently 6 Gauss–Kronrod rules are
available, all identifiable by the letters GK followed by the number of points required by the Kronrod
rule. Higher order rules generally provide higher accuracy with fewer subdivisons. However, for
integrands with sharp singularities, lower order rules may be more efficient, particularly if the integrand
away from the singularity is well behaved. With higher order rules, you may need to increase the
Absolute Interval Minimum and the Relative Interval Minimum to maintain numerical difference
between the abscissae and the segment bounds.

GK15
The Gauss–Kronrod rule based on 7 Gauss points and 15 Kronrod points.

GK21
The Gauss–Kronrod rule based on 10 Gauss points and 21 Kronrod points. This is the rule used
by nag_1d_quad_gen_1 (d01sjc).

GK31
The Gauss–Kronrod rule based on 15 Gauss points and 31 Kronrod points.

GK41
The Gauss–Kronrod rule based on 20 Gauss points and 41 Kronrod points.

GK51
The Gauss–Kronrod rule based on 25 Gauss points and 51 Kronrod points.

GK61
The Gauss–Kronrod rule based on 30 Gauss points and 61 Kronrod points. This is the highest
order rule, most suitable for highly oscilliatory integrals.

Relative Interval Minimum r Default ¼ 1:0e�6

r ¼ �r, the relative factor in the lower limit, �r b� aj j, for a segment to be considered for subdivision.
See also Absolute Interval Minimum and Section 9.

Constraint: r � 0:0.

Relative Tolerance r Default ¼
ffiffi
�
p

r ¼ �r, the required relative tolerance. See also Absolute Tolerance and Section 3.

Constraint: r � 0:0.

d01rac NAG Library Manual

d01rac.20 Mark 25



Note: setting both �r ¼ �a ¼ 0:0 is possible, although it will most likely result in an excessive amount of
computational effort.

11.2 Diagnostic Options

These options are provided for expert users who wish to examine and modify the precise details of the
computation. They should only be used after nag_quad_1d_gen_vec_multi_rcomm (d01rac) returns, as
opposed to the options listed in Section 11.1 which must be used before the first call to
nag_quad_1d_gen_vec_multi_rcomm (d01rac).

Index LDI i query only

Ildi, the index of icom required for obtaining ldi. See Section 9.1.

Index LDR i query only

Ildr , the index of icom required for obtaining ldr . See Section 9.1.

Index NSDIV i query only

Insdiv , the index of icom required for obtaining nsdiv. See Section 9.1.

Index NSEG i query only

Inseg, the index of icom required for obtaining nseg. See Section 9.1.

Index FCP i query only

Ifcp, the index of icom required for obtaining fcp. See Section 9.1.

Index EVALSP i query only

Ievalsp, the index of icom required for obtaining evalsp. See Section 9.1.

Index DSP i query only

Idsp, the index of icom required for obtaining dsp. See Section 9.1.

Index ESP i query only

Iesp, the index of icom required for obtaining esp. See Section 9.1.

Index SINFOIP i query only

Isinfoip, the index of icom required for obtaining sinfoip. See Section 9.1.

Index SINFORP i query only

Isinforp, the index of icom required for obtaining sinforp. See Section 9.1.

d01 – Quadrature d01rac

Mark 25 d01rac.21 (last)


	d01rac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Malcolm and Simpson (1976)
	Piessens (1973)
	Piessens et al. (1983)
	Wynn (1956)

	5 Arguments
	irevcm
	ni
	a
	b
	sid
	needi
	x
	lenx
	nx
	fm
	ldfm
	dinest
	errest
	iopts
	opts
	icom
	licom
	com
	lcom
	fail

	6 Error Indicators and Warnings
	NE_ACCURACY
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_INVALID_ARRAY
	NE_INVALID_OPTION
	NE_NO_LICENCE
	NE_QUAD_BAD_SUBDIV_INT
	NE_QUAD_BRKPTS_INVAL
	NE_TOO_SMALL
	NE_USER_STOP

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Details of the Computation

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Optional Arguments
	11.1 Description of the Optional Arguments
	[Abs]olute [I]nterval [Min]imum
	[Abs]olute [Tol]erance
	[Extrap]olation
	[Extrap]olation [Saf]eguard
	[Max]imum [Sub]divisions
	[Pri]mary [Div]isions
	[Pri]mary Division [Mode]
	[Pri]oritize [Err]or
	[Q]uadrature [Rule]
	[Rel]ative [I]nterval [Min]imum
	[Rel]ative [Tol]erance

	11.2 Diagnostic Options
	[In]dex [LDI]
	[In]dex [LDR]
	[In]dex [NSDIV]
	[In]dex [NSEG]
	[In]dex [FCP]
	[In]dex [EVALSP]
	[In]dex [DSP]
	[In]dex [ESP]
	[In]dex [SINFOIP]
	[In]dex [SINFORP]



	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction




