c06 — Fourier Transforms c06pac

NAG Library Function Document
nag_sum_f{ft realherm_1d (cO6pac)

1 Purpose

nag sum_fft realherm_ 1d (cO6pac) calculates the discrete Fourier transform of a sequence of n real data
values or of a Hermitian sequence of n complex data values stored in compact form in a double array.

2 Specification

#include <nag.h>
#include <nagc06.h>

void nag_sum_fft_realherm_1d (Nag_TransformDirection direct, double x[],
Integer n, NagError *fail)

3 Description

Given a sequence of n real data values z;, for j=0,1,...,n — 1, nag_sum_fft realherm_1d (cO6pac)
calculates their discrete Fourier transform (in the forward direction) defined by

X 1 &4 2k
. = — i X €X —
2k \/ﬁ;:ox] p(7 "

), k=0,1,...,n—1.

The transformed values Z;, are complex, but they form a Hermitian sequence (i.e., 2,_j is the complex
conjugate of 2;), so they are completely determined by n real numbers (since 2y is real, as is 2,/; for n
even).

Alternatively, given a Hermitian sequence of n complex data values z;, this function calculates their
inverse (backward) discrete Fourier transform defined by

1 2mjk
= 7 ' k=0,1,....,n—1.
T \/ﬁjzozjxexp<z o), , 1, ;N

The transformed values zj are real.

(Note the scale factor of ﬁ in the above definitions.)

A call of nag_sum_fft realherm_1d (cO6pac) with direct = Nag ForwardTransform followed by a call
with direct = Nag_BackwardTransform will restore the original data.

nag_sum_fft realherm_1d (cO6pac) uses a variant of the fast Fourier transform (FFT) algorithm (see
Brigham (1974)) known as the Stockham self-sorting algorithm, which is described in Temperton (1983).

The same functionality is available using the forward and backward transform function pair:
nag_sum_fft real 2d (cO6pvc) and nag sum_fft hermitian 2d (cO6pwc) on setting n = 1. This pair
use a different storage solution; real data is stored in a double array, while Hermitian data (the first
unconjugated half) is stored in a Complex array.

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice—Hall
Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1-23

Mark 25 cO6pac.1

cO6pac NAG Library Manual

6

Arguments

direct — Nag_TransformDirection Input

On entry: if the forward transform as defined in Section 3 is to be computed, then direct must be
set equal to Nag_ForwardTransform.

If the backward transform is to be computed then direct must be set equal to
Nag_BackwardTransform.

Constraint: direct = Nag_ForwardTransform or Nag_BackwardTransform.

x[n + 2] — double Input/Output
On entry:
if direct = Nag_ForwardTransform, x[j] must contain z;, for j=0,1,...,n —1;

if direct = Nag BackwardTransform, x[2 x k] and x[2 x k + 1] must contain the real and
imaginary parts respectively of z;, for £k =0,1,...,n/2. (Note that for the sequence z; to
be Hermitian, the imaginary part of zp, and of z,/, for n even, must be zero.)

On exit:

if direct = Nag_ForwardTransform, x[2 x k] and x[2 x £+ 1] will contain the real and
imaginary parts respectively of %;, for £k =0,1,...,n/2;

if direct = Nag_BackwardTransform, x[j] will contain z;, for j=0,1,...,n— L.

n — Integer Input
On entry: n, the number of data values.

Constraint: n > 1.

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

(value) is an invalid value of direct.

NE_INT

On entry, n = (value).
Constraint: n > 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

c06pac.2 Mark 25

c06 — Fourier Transforms c06pac

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and
comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Parallelism and Performance

nag sum_fft realherm 1d (cO6pac) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag sum_fft realherm 1d (cO6pac) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken is approximately proportional to n x log(n), but also depends on the factorization of n.
nag sum_fft realherm_ 1d (cO6pac) is faster if the only prime factors of n are 2, 3 or 5; and fastest of all
if n is a power of 2. This function internally allocates a workspace of 3n + 100 double values.

10 Example

This example reads in a sequence of real data values and prints their discrete Fourier transform (as
computed by nag_sum_fft realherm_1d (cO6pac) with direct = Nag ForwardTransform), after expanding
it from complex Hermitian form into a full complex sequence. It then performs an inverse transform
using nag sum_fft realherm 1d (cO6pac) with direct = Nag_ BackwardTransform, and prints the
sequence so obtained alongside the original data values.

10.1 Program Text
/* nag_sum_fft_realherm_1d (cO6bpac) Example Program.
*

* Copyright 2014 Numerical Algorithms Group.
* Mark 24, 2013.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>

int main(void)

{
/* Scalars */
Integer exit_status = 0, i, n;
/* Arrays */
double *x = 0, *x_orig, *x_back;

/* Nag Types */
NagError fail;
#ifdef NAG_LOAD_FP
/* The following line is needed to force the Microsoft linker
* to load floating point support

*/

Mark 25 cO6pac.3

cO6pac NAG Library Manual

float force_loading_of_ms_float_support = 0;
#endif /* NAG_LOAD_FP */

INIT_FAIL(fail);
printf("nag_sum_fft_realherm 1d (cO6pac) Example Program Results\n");

/* Read dimensions of array and array values from data file. */
#ifdef _WIN32
scanf_s("%*["\n]%"NAG_IFMT"%*[*\nl]", &n);
#else
scanf ("$*["\n]%$"NAG_IFMT"%*["\nl]", &n);
#endif
if (!(x = NAG_ALLOC(n+2, double)) ||
! (x_orig = NAG_ALLOC(n, double)) ||
! (x_back = NAG_ALLOC(n+2, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (i = 0; 1 < n; i++) {
#ifdef _WIN32
scanf_s("%1f", &x_origlil);

#else
scanf ("%1f", &x_origl[il);
#endif
x[1] = x_origl[il;
b

/* Compute discrete Fourier transform of real array x using
* nag_sum_fft_realherm_1d (cO6pac).

*/
nag_sum_fft_realherm 1d(Nag_ForwardTransform, x, n, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_sum_fft_realherm 1d (cO6pac).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}
for (i = 0; i < n + 2; i++) x_back[i] = x[i];

/* Compute inverse discrete Fourier transform of Hermitian array x using
* nag_sum_fft_realherm_1d (cO6pac).
*/

nag_sum_fft_realherm_1d(Nag_BackwardTransform, x_back, n, &fail);

if (fail.code != NE_NOERROR)

{
printf("Error from nag_sum_fft_realherm_1d (cObpac).\n%s\n",
fail.message) ;
exit_status = 2;
goto END;
}

printf ("\n%2s%7s%22s%17s\n","i","x","z = FFT(x)","InvFFT(z)");
for (i = 0; i < n; i++) {
if (i<=n/2) {
printf ("%$2"NAG_IFMT" %8.5f (%$8.5f, %8.5f) %8.5f\n", i, x_origl[il],
x[2*i], x[2*i+1], x_back[i]);
} else {
printf ("$2"NAG_IFMT" %8.5f (%8.5f, %8.5f) %8.5f\n", i, x_origl[i],
x[2*(n-1)]1, -x[2*(n-1)+1]1, x_backl[i]);
}

b
END:

NAG_FREE (%) ;

cO6pac.4 Mark 25

c06 — Fourier Transforms c06pac

NAG_FREE (x_orig) ;
NAG_FREE (x_back) ;

return exit_status;

}

10.2 Program Data

nag_sum_fft_realherm_1d (cO6pac) Example Program Data
7 :n

.34907

.54890

.74776

.94459

.13850

.32850

.51370 : x[0:n-1]

PRPRPROOOO

10.3 Program Results

nag_sum_fft_realherm_1d (cO6pac) Example Program Results

i X 7z = FFT(x) InvFFT(z)
0 0.34907 (2.48361, 0.00000) 0.34907
1 0.54890 (-0.26599, 0.53090) 0.54890
2 0.74776 (-0.25768, 0.20298) 0.74776
3 0.94459 (-0.25636, 0.05806) 0.94459
4 1.13850 (-0.25636, -0.05806) 1.13850
5 1.32850 (-0.25768, -0.20298) 1.32850
6 1.51370 (-0.26599, -0.53090) 1.51370

Mark 25 c06pac.5 (last)

	c06pac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Brigham (1974)
	Temperton (1983)

	5 Arguments
	direct
	x
	n
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

