
NAG Library Function Document

nag_zeros_real_poly (c02agc)

1 Purpose

nag_zeros_real_poly (c02agc) finds all the roots of a real polynomial equation, using a variant of
Laguerre’s method.

2 Specification

#include <nag.h>
#include <nagc02.h>

void nag_zeros_real_poly (Integer n, const double a[], Nag_Boolean scale,
Complex z[], NagError *fail)

3 Description

nag_zeros_real_poly (c02agc) attempts to find all the roots of the nth degree real polynomial equation

P zð Þ ¼ a0z
n þ a1z

n�1 þ a2z
n�2 þ � � � þ an�1zþ an ¼ 0:

The roots are located using a modified form of Laguerre’s method, originally proposed by Smith (1967).

The method of Laguerre (see Wilkinson (1965)) can be described by the iterative scheme

L zkð Þ ¼ zkþ1 � zk ¼
�nP zkð Þ

P 0 zkð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
H zkð Þ

p ;

where H zkð Þ ¼ n� 1ð Þ n� 1ð Þ P 0 zkð Þð Þ2 � nP zkð ÞP 00 zkð Þ
h i

, and z0 is specified.

The sign in the denominator is chosen so that the modulus of the Laguerre step at zk, viz. L zkð Þj j, is as
small as possible. The method can be shown to be cubically convergent for isolated roots (real or
complex) and linearly convergent for multiple roots.

The function generates a sequence of iterates z1; z2; z3; . . . ; such that P zkþ1ð Þj j < P zkð Þj j and ensures
that zkþ1 þ L zkþ1ð Þ ‘roughly’ lies inside a circular region of radius Fj j about zk known to contain a zero
of P zð Þ; that is, L zkþ1ð Þj j � Fj j, where F denotes the Fejér bound (see Marden (1966)) at the point zk.
Following Smith (1967), F is taken to be min B; 1:445nRð Þ, where B is an upper bound for the
magnitude of the smallest zero given by

B ¼ 1:0001�min
ffiffiffi
n
p

L zkð Þ; r1j j; an=a0j j1=n
� �

;

r1 is the zero X of smaller magnitude of the quadratic equation

P 00 zkð Þ= 2n n� 1ð Þð Þð ÞX2 þ P 0 zkð Þ=nð ÞX þ 1

2
P zkð Þ ¼ 0

and the Cauchy lower bound R for the smallest zero is computed (using Newton’s Method) as the
positive root of the polynomial equation

a0j jzn þ a1j jzn�1 þ a2j jzn�2 þ � � � þ an�1j jz� anj j ¼ 0:

Starting from the origin, successive iterates are generated according to the rule zkþ1 ¼ zk þ L zkð Þ, for
k ¼ 1; 2; 3; . . ., and L zkð Þ is ‘adjusted’ so that P zkþ1ð Þj j < P zkð Þj j and L zkþ1ð Þj j � Fj j. The iterative
procedure terminates if P zkþ1ð Þ is smaller in absolute value than the bound on the rounding error in
P zkþ1ð Þ and the current iterate zp ¼ zkþ1 is taken to be a zero of P zð Þ (as is its conjugate �zp if zp is

complex). The deflated polynomial ~P zð Þ ¼ P zð Þ= z� zp
� �

of degree n� 1 if zp is real

(~P zð Þ ¼ P zð Þ= z� zp
� �

z� �zp
� �� �

of degree n� 2 if zp is complex) is then formed, and the above

c02 – Zeros of Polynomials c02agc

Mark 25 c02agc.1

procedure is repeated on the deflated polynomial until n < 3, whereupon the remaining roots are
obtained via the ‘standard’ closed formulae for a linear (n ¼ 1) or quadratic (n ¼ 2) equation.

4 References

Marden M (1966) Geometry of polynomials Mathematical Surveys 3 American Mathematical Society,
Providence, RI

Smith B T (1967) ZERPOL: a zero finding algorithm for polynomials using Laguerre’s method Technical
Report Department of Computer Science, University of Toronto, Canada

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

5 Arguments

1: n – Integer Input

On entry: n, the degree of the polynomial.

Constraint: n � 1.

2: a½nþ 1� – const double Input

On entry: a½i� must contain ai (i.e., the coefficient of zn�i), for i ¼ 0; 1; . . . ; n.

Constraint: a½0� 6¼ 0:0.

3: scale – Nag_Boolean Input

On entry: indicates whether or not the polynomial is to be scaled. See Section 9 for advice on
when it may be preferable to set scale ¼ Nag FALSE and for a description of the scaling strategy.

Suggested value: scale ¼ Nag TRUE.

4: z½n� – Complex Output

On exit: the real and imaginary parts of the roots are stored in z½i�:re and z½i�:im respectively, for
i ¼ 0; 1; . . . ; n� 1. Complex conjugate pairs of roots are stored in consecutive pairs of z; that is,
z½iþ 1�:re ¼ z½i�:re and z½iþ 1�:im ¼ �z½i�:im

5: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT_ARG_LT

On entry, n ¼ valueh i.
Constraint: n � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

c02agc NAG Library Manual

c02agc.2 Mark 25

NE_POLY_NOT_CONV

The iterative procedure has failed to converge. This error is very unlikely to occur. If it does,
please contact NAG immediately, as some basic assumption for the arithmetic has been violated.

NE_POLY_OVFLOW

The function cannot evaluate P zð Þ near some of its zeros without overflow. Please contact NAG
immediately.

NE_POLY_UNFLOW

The function cannot evaluate P zð Þ near some of its zeros without underflow. Please contact NAG
immediately.

NE_REAL_ARG_EQ

On entry, a½0� ¼ valueh i.
Constraint: a½0� 6¼ 0:0.

7 Accuracy

All roots are evaluated as accurately as possible, but because of the inherent nature of the problem
complete accuracy cannot be guaranteed.

8 Parallelism and Performance

Not applicable.

9 Further Comments

If scale ¼ Nag TRUE, then a scaling factor for the coefficients is chosen as a power of the base b of the
machine so that the largest coefficient in magnitude approaches thresh ¼ bemax�p. You should note that
no scaling is performed if the largest coefficient in magnitude exceeds thresh, even if
scale ¼ Nag TRUE. (b, emax and p are defined in Chapter x02.)

However, with scale ¼ Nag TRUE, overflow may be encountered when the input coefficients
a0; a1; a2; . . . ; an vary widely in magnitude, particularly on those machines for which b4p overflows.
In such cases, scale should be set to Nag_FALSE and the coefficients scaled so that the largest
coefficient in magnitude does not exceed bemax�2p.

Even so, the scaling strategy used in nag_zeros_real_poly (c02agc) is sometimes insufficient to avoid
overflow and/or underflow conditions. In such cases, you are recommended to scale the independent
variable zð Þ so that the disparity between the largest and smallest coefficient in magnitude is reduced.
That is, use the function to locate the zeros of the polynomial d� P czð Þ for some suitable values of c
and d. For example, if the original polynomial was P zð Þ ¼ 2�100 þ 2100z20, then choosing c ¼ 2�10 and
d ¼ 2100, for instance, would yield the scaled polynomial 1þ z20, which is well-behaved relative to
overflow and underflow and has zeros which are 210 times those of P zð Þ.
If the function fails with NE_POLY_NOT_CONV, NE_POLY_UNFLOW or NE_POLY_OVFLOW, then
the real and imaginary parts of any roots obtained before the failure occurred are stored in z in the
reverse order in which they were found. More precisely, z½n� 1�:re and z½n� 1�:im contain the real and
imaginary parts of the 1st root found, z½n� 2�:re and z½n� 2�:im contain the real and imaginary parts of
the 2nd root found, and so on. The real and imaginary parts of any roots not found will be set to a large

negative number, specifically �1:0=
ffiffiffiffiffiffiffi
2:0
p

� nag real safe small number
� �

.

10 Example

To find the roots of the 5th degree polynomial z5 þ 2z4 þ 3z3 þ 4z2 þ 5zþ 6 ¼ 0.

c02 – Zeros of Polynomials c02agc

Mark 25 c02agc.3

10.1 Program Text

/* nag_zeros_real_poly (c02agc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 2, 1991.
*
* Mark 8 revised, 2004.
*/

#include <nag.h>
#include <stdio.h>
#include <math.h>
#include <nag_stdlib.h>
#include <nagc02.h>

int main(void)
{

Nag_Boolean scale;
Complex *z = 0;
Integer exit_status = 0, i, n, nroot;
NagError fail;
double *a = 0;

INIT_FAIL(fail);

printf("nag_zeros_real_poly (c02agc) Example Program Results\n");
/* Skip heading in data file */

#ifdef _WIN32
scanf_s("%*[^\n]");

#else
scanf("%*[^\n]");

#endif
#ifdef _WIN32

scanf_s("%"NAG_IFMT"", &n);
#else

scanf("%"NAG_IFMT"", &n);
#endif

if (n > 0)
{

scale = Nag_TRUE;
if (!(a = NAG_ALLOC(n+1, double)) ||

!(z = NAG_ALLOC(n, Complex)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
{

printf("Invalid n.\n");
exit_status = 1;
return exit_status;

}

for (i = 0; i <= n; i++)
#ifdef _WIN32

scanf_s("%lf", &a[i]);
#else

scanf("%lf", &a[i]);
#endif

printf("\nDegree of polynomial = %4"NAG_IFMT"\n\n", n);

/* nag_zeros_real_poly (c02agc).
* Zeros of a polynomial with real coefficients
*/

nag_zeros_real_poly(n, a, scale, z, &fail);
if (fail.code != NE_NOERROR)

c02agc NAG Library Manual

c02agc.4 Mark 25

{
printf("Error from nag_zeros_real_poly (c02agc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

printf("Roots of polynomial\n\n");
nroot = 1;
while (nroot <= n)

{
if (z[nroot-1].im == 0.0)

{
printf("z = %13.4e\n", z[nroot-1].re);
nroot += 1;

}
else

{
printf("z = %13.4e +/- %14.4e\n", z[nroot-1].re,

fabs(z[nroot-1].im));
nroot += 2;

}
}

END:
NAG_FREE(a);
NAG_FREE(z);
return exit_status;

}

10.2 Program Data

nag_zeros_real_poly (c02agc) Example Program Data
5

1.0 2.0 3.0 4.0 5.0 6.0

10.3 Program Results

nag_zeros_real_poly (c02agc) Example Program Results

Degree of polynomial = 5

Roots of polynomial

z = -1.4918e+00
z = 5.5169e-01 +/- 1.2533e+00
z = -8.0579e-01 +/- 1.2229e+00

c02 – Zeros of Polynomials c02agc

Mark 25 c02agc.5 (last)

	c02agc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Marden (1966)
	Smith (1967)
	Wilkinson (1965)

	5 Arguments
	n
	a
	scale
	z
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT_ARG_LT
	NE_INTERNAL_ERROR
	NE_POLY_NOT_CONV
	NE_POLY_OVFLOW
	NE_POLY_UNFLOW
	NE_REAL_ARG_EQ

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

