nag_dtrmm (f16yfc) (PDF version)
f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_dtrmm (f16yfc)

 Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_dtrmm (f16yfc) performs matrix-matrix multiplication for a real triangular matrix.

2  Specification

#include <nag.h>
#include <nagf16.h>
void  nag_dtrmm (Nag_OrderType order, Nag_SideType side, Nag_UploType uplo, Nag_TransType trans, Nag_DiagType diag, Integer m, Integer n, double alpha, const double a[], Integer pda, double b[], Integer pdb, NagError *fail)

3  Description

nag_dtrmm (f16yfc) performs one of the matrix-matrix operations
BαAB, BαATB, BαBA  or BαBAT,  
where B is an m by n real matrix, A is a real triangular matrix, and α is a real scalar.

4  References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

5  Arguments

1:     order Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     side Nag_SideTypeInput
On entry: specifies whether B is operated on from the left or the right.
side=Nag_LeftSide
B is pre-multiplied from the left.
side=Nag_RightSide
B is post-multiplied from the right.
Constraint: side=Nag_LeftSide or Nag_RightSide.
3:     uplo Nag_UploTypeInput
On entry: specifies whether A is upper or lower triangular.
uplo=Nag_Upper
A is upper triangular.
uplo=Nag_Lower
A is lower triangular.
Constraint: uplo=Nag_Upper or Nag_Lower.
4:     trans Nag_TransTypeInput
On entry: specifies whether the operation involves A or AT.
trans=Nag_NoTrans
It involves A.
trans=Nag_Trans or Nag_ConjTrans
It involves AT.
Constraint: trans=Nag_NoTrans, Nag_Trans or Nag_ConjTrans.
5:     diag Nag_DiagTypeInput
On entry: specifies whether A has nonunit or unit diagonal elements.
diag=Nag_NonUnitDiag
The diagonal elements are stored explicitly.
diag=Nag_UnitDiag
The diagonal elements are assumed to be 1 and are not referenced.
Constraint: diag=Nag_NonUnitDiag or Nag_UnitDiag.
6:     m IntegerInput
On entry: m, the number of rows of the matrix B; the order of A if side=Nag_LeftSide.
Constraint: m0.
7:     n IntegerInput
On entry: n, the number of columns of the matrix B; the order of A if side=Nag_RightSide.
Constraint: n0.
8:     alpha doubleInput
On entry: the scalar α.
9:     a[dim] const doubleInput
Note: the dimension, dim, of the array a must be at least
  • max1,pda×m when side=Nag_LeftSide;
  • max1,pda×n when side=Nag_RightSide.
On entry: the triangular matrix A; A is m by m if side=Nag_LeftSide, or n by n if side=Nag_RightSide.
If order=Nag_ColMajor, Aij is stored in a[j-1×pda+i-1].
If order=Nag_RowMajor, Aij is stored in a[i-1×pda+j-1].
If uplo=Nag_Upper, A is upper triangular and the elements of the array corresponding to the lower triangular part of A are not referenced.
If uplo=Nag_Lower, A is lower triangular and the elements of the array corresponding to the upper triangular part of A are not referenced.
If diag=Nag_UnitDiag, the diagonal elements of A are assumed to be 1, and are not referenced.
10:   pda IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array a.
Constraints:
  • if side=Nag_LeftSide, pda max1,m ;
  • if side=Nag_RightSide, pda max1,n .
11:   b[dim] doubleInput/Output
Note: the dimension, dim, of the array b must be at least
  • max1,pdb×n when order=Nag_ColMajor;
  • max1,m×pdb when order=Nag_RowMajor.
If order=Nag_ColMajor, Bij is stored in b[j-1×pdb+i-1].
If order=Nag_RowMajor, Bij is stored in b[i-1×pdb+j-1].
On entry: the m by n matrix B.
If alpha=0, b need not be set.
On exit: the updated matrix B.
12:   pdb IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
  • if order=Nag_ColMajor, pdbmax1,m;
  • if order=Nag_RowMajor, pdbmax1,n.
13:   fail NagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_ENUM_INT_2
On entry, side=value, m=value, pda=value.
Constraint: if side=Nag_LeftSide, pda max1,m .
On entry, side=value, n=value, pda=value.
Constraint: if side=Nag_RightSide, pda max1,n .
NE_INT
On entry, m=value.
Constraint: m0.
On entry, n=value.
Constraint: n0.
NE_INT_2
On entry, pdb=value, m=value.
Constraint: pdbmax1,m.
On entry, pdb=value and n=value.
Constraint: pdbmax1,n.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7  Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8  Parallelism and Performance

Not applicable.

9  Further Comments

None.

10  Example

Premultiply real 4 by 2 matrix B by lower triangular 4 by 4 matrix A, BAB, where
A = 4.30 -3.96 -4.87 0.40 0.31 -8.02 -0.27 0.07 -5.95 0.12  
and
B = -3.0 -5.0 -1.0 1.0 2.0 -1.0 1.0 6.0 .  

10.1  Program Text

Program Text (f16yfce.c)

10.2  Program Data

Program Data (f16yfce.d)

10.3  Program Results

Program Results (f16yfce.r)


nag_dtrmm (f16yfc) (PDF version)
f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2015