nag_ztbsv (f16skc) (PDF version)
f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_ztbsv (f16skc)

 Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_ztbsv (f16skc) solves a system of equations given as a complex triangular band matrix.

2  Specification

#include <nag.h>
#include <nagf16.h>
void  nag_ztbsv (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans, Nag_DiagType diag, Integer n, Integer k, Complex alpha, const Complex ab[], Integer pdab, Complex x[], Integer incx, NagError *fail)

3  Description

nag_ztbsv (f16skc) performs one of the matrix-vector operations
xαA-1x,  xαA-Tx  or  xαA-Hx,  
where A is an n by n complex triangular band matrix with k subdiagonals or superdiagonals, x is an n-element complex vector and α is a complex scalar. A-T denotes A-T or equivalently A-T; A-H denotes AH-1 or equivalently A-1H.
No test for singularity or near-singularity of A is included in this function. Such tests must be performed before calling this function.

4  References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

5  Arguments

1:     order Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     uplo Nag_UploTypeInput
On entry: specifies whether A is upper or lower triangular.
uplo=Nag_Upper
A is upper triangular.
uplo=Nag_Lower
A is lower triangular.
Constraint: uplo=Nag_Upper or Nag_Lower.
3:     trans Nag_TransTypeInput
On entry: specifies the operation to be performed.
trans=Nag_NoTrans
xαA-1x.
trans=Nag_Trans
xαA-Tx.
trans=Nag_ConjTrans
xαA-Hx.
Constraint: trans=Nag_NoTrans, Nag_Trans or Nag_ConjTrans.
4:     diag Nag_DiagTypeInput
On entry: specifies whether A has nonunit or unit diagonal elements.
diag=Nag_NonUnitDiag
The diagonal elements are stored explicitly.
diag=Nag_UnitDiag
The diagonal elements are assumed to be 1 and are not referenced.
Constraint: diag=Nag_NonUnitDiag or Nag_UnitDiag.
5:     n IntegerInput
On entry: n, the order of the matrix A.
Constraint: n0.
6:     k IntegerInput
On entry: k, the number of subdiagonals or superdiagonals of the matrix A.
Constraint: k0.
7:     alpha ComplexInput
On entry: the scalar α.
8:     ab[dim] const ComplexInput
Note: the dimension, dim, of the array ab must be at least max1,pdab×n.
On entry: the n by n triangular band matrix A.
This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements of Aij, depends on the order and uplo arguments as follows:
  • if order=Nag_ColMajor and uplo=Nag_Upper,
              Aij is stored in ab[k+i-j+j-1×pdab], for j=1,,n and i=max1,j-k,,j;
  • if order=Nag_ColMajor and uplo=Nag_Lower,
              Aij is stored in ab[i-j+j-1×pdab], for j=1,,n and i=j,,minn,j+k;
  • if order=Nag_RowMajor and uplo=Nag_Upper,
              Aij is stored in ab[j-i+i-1×pdab], for i=1,,n and j=i,,minn,i+k;
  • if order=Nag_RowMajor and uplo=Nag_Lower,
              Aij is stored in ab[k+j-i+i-1×pdab], for i=1,,n and j=max1,i-k,,i.
If diag=Nag_UnitDiag, the diagonal elements of AB are assumed to be 1, and are not referenced.
9:     pdab IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix A in the array ab.
Constraint: pdabk+1.
10:   x[dim] ComplexInput/Output
Note: the dimension, dim, of the array x must be at least max1,1+n-1incx.
On entry: the vector x.
On exit: the solution vector x.
11:   incx IntegerInput
On entry: the increment in the subscripts of x between successive elements of x.
Constraint: incx0.
12:   fail NagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, incx=value.
Constraint: incx0.
On entry, k=value.
Constraint: k0.
On entry, n=value.
Constraint: n0.
NE_INT_2
On entry, pdab=value, k=value.
Constraint: pdabk+1.
NE_INTERNAL_ERROR
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7  Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8  Parallelism and Performance

Not applicable.

9  Further Comments

None.

10  Example

Solves complex triangular banded system of linear equations, Ax=y, where A is a complex triangular 4 by 4 matrix, with 2 subdiagonals, given by
A = -1.94+4.43i -3.39+3.44i 4.12-4.27i 1.62+3.68i -1.84+5.53i 0.43-2.66i .00i+0.00 -2.77-1.93i 1.74-0.04i 0.44+0.10i  
and
y = -8.86-03.88i -15.57-23.41i -7.63+22.78i -14.74-02.40i .  

10.1  Program Text

Program Text (f16skce.c)

10.2  Program Data

Program Data (f16skce.d)

10.3  Program Results

Program Results (f16skce.r)


nag_ztbsv (f16skc) (PDF version)
f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2015