d01 Chapter Contents (PDF version)
d01 Chapter Introduction
NAG Library Manual

NAG Library Chapter Contents

d01 – Quadrature

d01 Chapter Introduction

Function
Name
Mark of
Introduction

Purpose
d01bdc
Example Text
23 nag_quad_1d_fin_smooth
One-dimensional quadrature, non-adaptive, finite interval
d01dac
Example Text
23 nag_quad_2d_fin
Two-dimensional quadrature, finite region
d01esc
Example Text
25 nag_quad_md_sgq_multi_vec
Multi-dimensional quadrature using sparse grids
d01fbc
Example Text
23 nag_quad_md_gauss
Multidimensional Gaussian quadrature over hyper-rectangle
d01fdc
Example Text
23 nag_quad_md_sphere
Multidimensional quadrature, Sag–Szekeres method, general product region or n-sphere
d01gac
Example Text
Example Data
2 nag_1d_quad_vals
One-dimensional integration of a function defined by data values only
d01gdc
Example Text
23 nag_quad_md_numth_vec
Multidimensional quadrature, general product region, number-theoretic method
d01gyc
Example Text
23 nag_quad_md_numth_coeff_prime
Korobov optimal coefficients for use in nag_quad_md_numth_vec (d01gdc), when number of points is prime
d01gzc
Example Text
23 nag_quad_md_numth_coeff_2prime
Korobov optimal coefficients for use in nag_quad_md_numth_vec (d01gdc), when number of points is product of two primes
d01pac
Example Text
23 nag_quad_md_simplex
Multidimensional quadrature over an n-simplex
d01rac
Example Text
24 nag_quad_1d_gen_vec_multi_rcomm
One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication
d01rcc 24 nag_quad_1d_gen_vec_multi_dimreq
Determine required array dimensions for nag_quad_1d_gen_vec_multi_rcomm (d01rac)
d01rgc
Example Text
24 nag_quad_1d_fin_gonnet_vec
One-dimensional quadrature, adaptive, finite interval, strategy due to Gonnet, allowing for badly behaved integrands
d01sjc
Example Text
5 nag_1d_quad_gen_1
One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly behaved integrands
d01skc
Example Text
5 nag_1d_quad_osc_1
One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions
d01slc
Example Text
5 nag_1d_quad_brkpts_1
One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points
d01smc
Example Text
5 nag_1d_quad_inf_1
One-dimensional adaptive quadrature over infinite or semi-infinite interval
d01snc
Example Text
5 nag_1d_quad_wt_trig_1
One-dimensional adaptive quadrature, finite interval, sine or cosine weight functions
d01spc
Example Text
5 nag_1d_quad_wt_alglog_1
One-dimensional adaptive quadrature, weight function with end-point singularities of algebraic-logarithmic type
d01sqc
Example Text
5 nag_1d_quad_wt_cauchy_1
One-dimensional adaptive quadrature, weight function 1/x-c, Cauchy principal value
d01ssc
Example Text
5 nag_1d_quad_inf_wt_trig_1
One-dimensional adaptive quadrature, semi-infinite interval, sine or cosine weight function
d01tac
Example Text
5 nag_1d_quad_gauss_1
One-dimensional Gaussian quadrature, choice of weight functions
Note: this function is scheduled for withdrawal at Mark 27, see Advice on Replacement Calls for Withdrawn/Superseded Functions for further information.
d01tbc
Example Text
23 nag_quad_1d_gauss_wset
Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule
d01tcc
Example Text
Example Data
Example Plot
23 nag_quad_1d_gauss_wgen
Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
d01uac
Example Text
24 nag_quad_1d_gauss_vec
One-dimensional Gaussian quadrature, choice of weight functions (vectorized)
d01wcc
Example Text
5 nag_multid_quad_adapt_1
Multidimensional adaptive quadrature
d01xbc
Example Text
5 nag_multid_quad_monte_carlo_1
Multidimensional quadrature, using Monte–Carlo method
d01zkc 24 nag_quad_opt_set
Option setting function
d01zlc 24 nag_quad_opt_get
Option getting function

d01 Chapter Contents (PDF version)
d01 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2015