Function Name |
Mark of Introduction |
Purpose |
d01bdc
Example Text |
23 | nag_quad_1d_fin_smooth One-dimensional quadrature, non-adaptive, finite interval |
d01dac
Example Text |
23 | nag_quad_2d_fin Two-dimensional quadrature, finite region |
d01esc
Example Text |
25 | nag_quad_md_sgq_multi_vec Multi-dimensional quadrature using sparse grids |
d01fbc
Example Text |
23 | nag_quad_md_gauss Multidimensional Gaussian quadrature over hyper-rectangle |
d01fdc
Example Text |
23 | nag_quad_md_sphere Multidimensional quadrature, Sag–Szekeres method, general product region or -sphere |
d01gac
Example Text Example Data |
2 | nag_1d_quad_vals One-dimensional integration of a function defined by data values only |
d01gdc
Example Text |
23 | nag_quad_md_numth_vec Multidimensional quadrature, general product region, number-theoretic method |
d01gyc
Example Text |
23 | nag_quad_md_numth_coeff_prime Korobov optimal coefficients for use in nag_quad_md_numth_vec (d01gdc), when number of points is prime |
d01gzc
Example Text |
23 | nag_quad_md_numth_coeff_2prime Korobov optimal coefficients for use in nag_quad_md_numth_vec (d01gdc), when number of points is product of two primes |
d01pac
Example Text |
23 | nag_quad_md_simplex Multidimensional quadrature over an -simplex |
d01rac
Example Text |
24 | nag_quad_1d_gen_vec_multi_rcomm One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication |
d01rcc | 24 | nag_quad_1d_gen_vec_multi_dimreq Determine required array dimensions for nag_quad_1d_gen_vec_multi_rcomm (d01rac) |
d01rgc
Example Text |
24 | nag_quad_1d_fin_gonnet_vec One-dimensional quadrature, adaptive, finite interval, strategy due to Gonnet, allowing for badly behaved integrands |
d01sjc
Example Text |
5 | nag_1d_quad_gen_1 One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly behaved integrands |
d01skc
Example Text |
5 | nag_1d_quad_osc_1 One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions |
d01slc
Example Text |
5 | nag_1d_quad_brkpts_1 One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points |
d01smc
Example Text |
5 | nag_1d_quad_inf_1 One-dimensional adaptive quadrature over infinite or semi-infinite interval |
d01snc
Example Text |
5 | nag_1d_quad_wt_trig_1 One-dimensional adaptive quadrature, finite interval, sine or cosine weight functions |
d01spc
Example Text |
5 | nag_1d_quad_wt_alglog_1 One-dimensional adaptive quadrature, weight function with end-point singularities of algebraic-logarithmic type |
d01sqc
Example Text |
5 | nag_1d_quad_wt_cauchy_1 One-dimensional adaptive quadrature, weight function , Cauchy principal value |
d01ssc
Example Text |
5 | nag_1d_quad_inf_wt_trig_1 One-dimensional adaptive quadrature, semi-infinite interval, sine or cosine weight function |
d01tac
Example Text |
5 | nag_1d_quad_gauss_1 One-dimensional Gaussian quadrature, choice of weight functions Note: this function is scheduled for withdrawal at Mark 27, see Advice on Replacement Calls for Withdrawn/Superseded Functions for further information. |
d01tbc
Example Text |
23 | nag_quad_1d_gauss_wset Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule |
d01tcc
Example Text Example Data Example Plot |
23 | nag_quad_1d_gauss_wgen Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule |
d01uac
Example Text |
24 | nag_quad_1d_gauss_vec One-dimensional Gaussian quadrature, choice of weight functions (vectorized) |
d01wcc
Example Text |
5 | nag_multid_quad_adapt_1 Multidimensional adaptive quadrature |
d01xbc
Example Text |
5 | nag_multid_quad_monte_carlo_1 Multidimensional quadrature, using Monte–Carlo method |
d01zkc | 24 | nag_quad_opt_set Option setting function |
d01zlc | 24 | nag_quad_opt_get Option getting function |