/* nag_ip_bb (h02bbc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 5, 1998.
* Mark 6 revised, 2000.
* Mark 7 revised, 2001.
* Mark 8 revised, 2004.
*
*/
#include <nag.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <nagh02.h>
#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL qphess(Integer n, Integer jthcol, const double h[],
Integer tdh, const double x[], double hx[],
Nag_Comm *comm);
#ifdef __cplusplus
}
#endif
#define A(I, J) a[(I) *tda + J]
int main(void)
{
static double ruser[1] = {-1.0};
Integer exit_status = 0;
Integer i, j, m, n, nbnd, tda;
char **crnames = 0, *names = 0;
double *a = 0, *bl = 0, *bu = 0, *cvec = 0, objf, red_bnd, *x = 0;
Nag_Boolean *intvar = 0, *intvar2 = 0;
char nag_enum_arg[40];
Nag_Comm comm;
Nag_H02_Opt options;
NagError fail;
INIT_FAIL(fail);
printf("nag_ip_bb (h02bbc) Example Program Results\n");
/* For communication with user-supplied functions: */
comm.user = ruser;
scanf(" %*[^\n]"); /* Skip heading */
/* Read the problem dimensions */
scanf(" %*[^\n]");
scanf("%ld%ld", &m, &n);
nbnd = n+m;
if (n >= 1 && m >= 0)
{
if (!(a = NAG_ALLOC(m*n, double)) ||
!(cvec = NAG_ALLOC(n, double)) ||
!(bl = NAG_ALLOC(nbnd, double)) ||
!(bu = NAG_ALLOC(nbnd, double)) ||
!(x = NAG_ALLOC(n, double)) ||
!(intvar = NAG_ALLOC(n, Nag_Boolean)) ||
!(intvar2 = NAG_ALLOC(n, Nag_Boolean)) ||
!(crnames = NAG_ALLOC(nbnd, char *)) ||
!(names = NAG_ALLOC(nbnd*9, char)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
tda = n;
}
else
{
printf("Invalid n or m.\n");
exit_status = 1;
return exit_status;
}
/* Read names */
scanf(" %*[^\n]");
nbnd = n+m;
for (i = 0; i < nbnd; ++i)
{
scanf("%8s", &names[9*i]);
crnames[i] = &names[9*i];
}
/* Read objective coefficients */
scanf(" %*[^\n]");
for (i = 0; i < n; ++i)
scanf("%lf", &cvec[i]);
/* Read the matrix coefficients */
scanf(" %*[^\n]");
for (i = 0; i < m; ++i)
for (j = 0; j < n; ++j)
scanf("%lf", &A(i, j));
/* Read the bounds */
scanf(" %*[^\n]");
for (i = 0; i < nbnd; ++i)
scanf("%lf", &bl[i]);
scanf(" %*[^\n]");
for (i = 0; i < nbnd; ++i)
scanf("%lf", &bu[i]);
/* Read which variables are integer */
scanf(" %*[^\n]");
for (i = 0; i < n; ++i)
{
scanf("%39s", nag_enum_arg);
/* intvar = Nag_TRUE if integer variable, Nag_FALSE if not */
intvar[i] = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg);
}
/* Read the initial estimate of x */
scanf(" %*[^\n]");
for (i = 0; i < n; ++i)
scanf("%lf", &x[i]);
/* nag_ip_init (h02xxc).
* Initialize option structure to null values
*/
nag_ip_init(&options); /* Initialise options structure */
options.crnames = crnames;
options.print_level = Nag_Soln;
/* nag_ip_bb (h02bbc), see above. */
fflush(stdout);
nag_ip_bb(n, m, a, tda, bl, bu, intvar, cvec, (double *) 0, 0,
NULLFN, x, &objf, &options, &comm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_ip_bb (h02bbc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Now solve a related problem obtained by reducing lower
bound on a constraint */
/* Read amount to reduce lower bound on constraint 1 by */
scanf(" %*[^\n]");
scanf("%lf", &red_bnd);
bl[n] -= red_bnd;
printf("\nSolve modified problem - use different tree search.\n");
printf("---------------------------------------------------\n");
options.list = Nag_FALSE;
if (red_bnd > 0.0)
{
/* We have a valid bound for the objective since this problem
is less constrained than first one */
options.int_obj_bound = objf + 1.0e-3;
}
options.nodsel = Nag_Deep_Search;
options.print_level = Nag_Iter;
printf("***Set options.list = Nag_FALSE\n");
printf("***Set options.int_obj_bound = %16.7e\n",
options.int_obj_bound);
printf("***Set options.nodsel = Nag_Deep_Search\n");
printf("***Set options.print_level = Nag_Iter\n");
/* nag_ip_bb (h02bbc), see above. */
fflush(stdout);
nag_ip_bb(n, m, a, tda, bl, bu, intvar, cvec, (double *) 0, 0,
NULLFN, x, &objf, &options, &comm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_ip_bb (h02bbc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
printf("\n***IP objective value = %16.7e\n", objf);
printf("\n\nIllustrate effect of supplying branching directions.\n");
printf("----------------------------------------------------\n\n");
options.branch_dir = Nag_Branch_InitX;
printf("***Set options.branch_dir = Nag_Branch_InitX\n");
/* nag_ip_bb (h02bbc), see above. */
fflush(stdout);
nag_ip_bb(n, m, a, tda, bl, bu, intvar, cvec, (double *) 0, 0,
NULLFN, x, &objf, &options, &comm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_ip_bb (h02bbc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
printf("\n***IP objective value = %16.7e\n", objf);
/* nag_ip_free (h02xzc).
* Free NAG allocated memory from option structures
*/
nag_ip_free(&options, "", &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_ip_free (h02xzc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Finally, illustrate solution of an MIQP problem
- we find the IP solution which is closest in
least-squares sense to the root node LP solution
of BB tree */
printf("\n\nObtain solution of root LP problem.\n");
printf("-----------------------------------\n\n");
/* Set all variables non-integer to obtain LP solution */
for (i = 0; i < n; ++i)
intvar2[i] = Nag_FALSE;
options.print_level = Nag_NoPrint;
printf("***Printout suppressed: options.print_level = Nag_NoPrint\n");
/* nag_ip_bb (h02bbc), see above. */
nag_ip_bb(n, m, a, tda, bl, bu, intvar2, cvec, (double *) 0, 0,
NULLFN, x, &objf, &options, &comm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_ip_bb (h02bbc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
printf("***LP objective value = %16.7e\n", objf);
/* Set linear part of solution */
for (i = 0; i < n; ++i)
cvec[i] = -2.0*x[i];
/* Re-initialise options structure */
/* nag_ip_free (h02xzc), see above. */
fflush(stdout);
nag_ip_free(&options, "", &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_ip_free (h02xzc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_ip_init (h02xxc), see above. */
nag_ip_init(&options);
options.crnames = crnames;
options.list = Nag_TRUE;
options.prob = Nag_MIQP2;
printf("\n\nFinally, solve a related MIQP problem.\n");
printf("--------------------------------------\n");
/* nag_ip_bb (h02bbc), see above. */
fflush(stdout);
nag_ip_bb(n, m, a, tda, bl, bu, intvar, cvec, (double *) 0, 0,
qphess, x, &objf, &options, &comm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_ip_bb (h02bbc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_ip_free (h02xzc), see above. */
nag_ip_free(&options, "", &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_ip_free (h02xzc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
NAG_FREE(a);
NAG_FREE(cvec);
NAG_FREE(bl);
NAG_FREE(bu);
NAG_FREE(x);
NAG_FREE(intvar);
NAG_FREE(intvar2);
NAG_FREE(crnames);
NAG_FREE(names);
return exit_status;
}
static void NAG_CALL qphess(Integer n, Integer jthcol, const double h[],
Integer tdh, const double x[], double hx[],
Nag_Comm *comm)
{
Integer i;
if (comm->user[0] == -1.0)
{
printf("(User-supplied callback qphess, first invocation.)\n");
fflush(stdout);
comm->user[0] = 0.0;
}
/* In this qphess function the Hessian is defined implicitly */
if (jthcol==0) {
for (i = 0; i < n; ++i)
hx[i] = 2.0*x[i];
}
else {
for (i = 0; i < n; ++i)
hx[i] = (i == jthcol - 1 ? 2.0 : 0.0);
}
} /* qphess */