/* nag_rand_bb_inc (g05xdc) Example Program.
 *
 * Copyright 2014 Numerical Algorithms Group.
 *
 * Mark 24, 2013.
 */
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>
#include <nagf07.h>

int get_z(Nag_OrderType order, Integer ntimes, Integer d, Integer a, 
          Integer npaths, double * z, Integer pdz);
void display_results(Integer npaths, Integer  ntimes, 
                     double *St, double  *analytic);

#define CHECK_FAIL(name,fail) if(fail.code != NE_NOERROR) { \
  printf("Error calling %s\n%s\n",name,fail.message); exit_status=-1; goto END;}


int main(void)
{
  Integer exit_status = 0;
  NagError fail;
  /*  Scalars */
  double t0, tend, r, S0, sigma;
  Integer a, d, pdb, pdc, pdz, nmove, npaths, ntimesteps, i,p ;
  /*  Arrays */
  double  *b = 0,  c[1],  *t = 0,  *rcomm = 0,  *diff = 0,  
          *times = 0,  *z = 0, *analytic = 0, *St = 0;
  Integer  *move = 0;
  INIT_FAIL(fail);

  /* We wish to solve the stochastic differential equation (SDE) 
   *      dSt = r * St * dt  +  sigma * St * dXt
   * where X is a one dimensional Wiener process.  This means we have
   *   a = 0 
   *   d = 1 
   *   c = 1   
   * We now set the other parameters of the SDE and the Euler-Maruyama scheme 
   *
   * Initial value of the process */
   S0 = 1.0;
   r = 0.05;
   sigma = 0.12;
   /* Number of paths to simulate */
   npaths = 3;
   /* The time interval [t0,T] on which to solve the SDE */
   t0 = 0.0;
   tend = 1.0;
   /* The time steps in the discretization of [t0,T] */
   ntimesteps = 20;
   /* Other bridge parameters */
   c[0] = 1.0;
   a = 0; 
   nmove = 0;
   d = 1;
   pdz = d*(ntimesteps+1-a);
   pdb = d*(ntimesteps+1);
   pdc = d;
   /* Allocate memory */
   if ( 
      !( t = NAG_ALLOC((ntimesteps), double)) ||
      !( times = NAG_ALLOC((ntimesteps), double)) ||
      !( rcomm = NAG_ALLOC((12 * (ntimesteps + 1)), double)) ||
      !( diff = NAG_ALLOC(d, double))  ||
      !( z = NAG_ALLOC(pdz * npaths, double)) || 
      !( b = NAG_ALLOC(pdb * npaths, double)) ||
      !( move = NAG_ALLOC(nmove, Integer)) ||
      !( St = NAG_ALLOC(npaths * (ntimesteps+1), double)) ||
      !( analytic = NAG_ALLOC(npaths, double)) 
       )
    {
      printf("Allocation failure\n");
      exit_status = -1;
      goto END;
    }

  /* Fix the time points at which the bridge is required */
  for (i=0; i<ntimesteps; i++) {
    t[i] = t0 + (i+1) * (tend - t0)/(double)(ntimesteps + 1);
  }  

  /*  g05xec.  Creates a Brownian bridge 
   *  construction order out of a set of input times */
  nag_rand_bb_make_bridge_order(Nag_RLRoundDown, t0, tend, ntimesteps, t, 
                                nmove, move, times, &fail);
  CHECK_FAIL("nag_rand_bb_make_bridge_order",fail);

  /* g05xcc. Initializes the generator which backs out 
   * the increments of sample paths generated by a Brownian bridge algorithm */
  nag_rand_bb_inc_init(t0, tend, times, ntimesteps, rcomm, &fail);
  CHECK_FAIL("nag_rand_bb_inc_init",fail);

  /* Generate the random numbers */
  if( get_z(Nag_RowMajor, ntimesteps, d, a, npaths, z, pdz) != 0) {
      printf("Error generating random numbers\n");
      exit_status = -1;
      goto END;   
  }

  /* nag_rand_bb_inc (g05xdc). Backs out the increments from sample paths 
   * generated by a Brownian bridge algorithm */
  nag_rand_bb_inc(Nag_RowMajor, npaths, d, a, diff, z, pdz, c, pdc, 
              b, pdb, rcomm, &fail);
  CHECK_FAIL("nag_rand_bb_inc",fail);

  /* Do the Euler-Maruyama time stepping for SDE 
   *      dSt = r * St * dt  +  sigma * St * dXt */
  // Definitions consistent with Nag_RowMajor
#define B(I,J) b[(I-1)*pdb + J-1]
#define ST(I,J) St[(I-1)*(ntimesteps+1) + J-1]
  for(p=1; p<=npaths; p++) {
    ST(p,1) = S0 + (t[0]-t0)*( r*S0 + sigma*S0*B(p,1) );
  }
  for(i=2; i<=ntimesteps; i++) {
    for(p=1; p<=npaths; p++) {
      ST(p,i) = ST(p,i-1) + (t[i-1]-t[i-2]) * 
                              ( r* ST(p,i-1) + sigma*ST(p,i-1)*B(p, i) );
    }   
  }  
  for(p=1; p<=npaths; p++) {
    ST(p,i) = ST(p,i-1) + (tend-t[ntimesteps-1]) * 
                                ( r*ST(p,i-1) + sigma*ST(p,i-1)*B(p,i) );
  }

  /* Compute the analytic solution: 
   *       ST = S0*exp( (r-sigma*sigma/2)*T + sigma*WT )
   * where WT =law sqrt(T)Z is the Wiener process at time T.
   *
   * The first quasi-random point in z is always used to compute
   * the final value of WT (equivalently BT, the final value of the
   * Brownian bridge). Hence we have that
   *       WT = sqrt(tend-t0)*z[0]
   */
  for (p=0; p<npaths; p++) {
    analytic[p] =  S0 * exp( (r-0.5*sigma*sigma)*(tend-t0) + 
                                     sigma*sqrt(tend-t0)*z[p*(ntimesteps+1)] );
  }
  /* Display the results*/
  display_results(npaths, ntimesteps, St, analytic);
 END:
  ;
  NAG_FREE(b);
  NAG_FREE(t);
  NAG_FREE(rcomm);
  NAG_FREE(analytic);
  NAG_FREE(diff);
  NAG_FREE(St);
  NAG_FREE(times);
  NAG_FREE(z);
  NAG_FREE(move);
  return exit_status;
#undef C
}

int get_z(Nag_OrderType order, Integer ntimes, Integer d, Integer a, 
          Integer npaths, double * z, Integer pdz)
{
  NagError fail;
  Integer lseed, lstate, seed[1], idim, liref, *iref=0, state[80], i;
  Integer exit_status = 0;
  double * xmean=0, *stdev=0;
  lstate = 80;
  lseed = 1;
  INIT_FAIL(fail);
  idim = d*(ntimes + 1 - a);
  liref = 32*idim + 7;
  if (
       !( iref = NAG_ALLOC((liref), Integer)) ||
       !( xmean = NAG_ALLOC((idim), double)) ||
       !( stdev = NAG_ALLOC((idim), double)) ) 
  {
    printf("Allocation failure in get_z\n");
    exit_status = -1;
    goto END;
  } 

  /* We now need to generate the input pseudorandom numbers */
  seed[0] = 1023401;
  /* g05kfc. Initializes a pseudorandom number generator */
  /* to give a repeatable sequence */
  nag_rand_init_repeatable(Nag_MRG32k3a,0,seed, lseed, state, &lstate, &fail);
  CHECK_FAIL("nag_rand_init_repeatable",fail);

 /* g05ync. Initializes a scrambled quasi-random generator */ 
  nag_quasi_init_scrambled(Nag_QuasiRandom_Sobol, Nag_FaureTezuka, idim, 
        iref, liref, 0, 32, state, &fail);
  CHECK_FAIL("nag_quasi_init_scrambled",fail);

  for(i=0; i<idim; i++) {
    xmean[i] = 0.0;
    stdev[i] = 1.0;
  }
  /* g05skc. Generates a Normal quasi-random number sequence */ 
  nag_quasi_rand_normal(order, xmean, stdev, npaths, z, pdz, iref, &fail);
  CHECK_FAIL("nag_quasi_rand_normal",fail);

END:
  NAG_FREE(iref);
  NAG_FREE(xmean);
  NAG_FREE(stdev);
  return exit_status;
}

void display_results(Integer npaths, Integer  ntimesteps, 
                     double *St, double  *analytic)
{
  Integer i,p;
  printf("nag_rand_bb_inc (g05xdc) Example Program Results\n\n");
  printf("Euler-Maruyama solution for Geometric Brownian motion\n");
  printf("       ");
  for ( p=1; p<=npaths; p++) {
    printf("Path");
    printf("%2ld    ", p);
  }
  printf("\n");
  for(i=1; i<=ntimesteps+1; i++) {
    printf("%2ld ", i);
    for(p=1; p<=npaths; p++) printf("%10.4f", ST(p,i) );
    printf("\n");
  }
  
  printf("\nAnalytic solution at final time step\n");
  printf("    ");
  for(p=1; p<=npaths; p++) {
    printf("%7s","Path");
    printf("%2ld ", p);
  }
  printf("\n   ");
  for(p=0; p<npaths; p++) printf("%10.4f", analytic[p]);
  printf("\n");
}