/* nag_rand_bb_init (g05xac) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 24, 2013.
*/
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>
#include <nagf07.h>
int get_z(Integer nelements, double * z);
void display_results(Nag_OrderType order, Integer npaths, Integer ntimes,
Integer d, double *b, Integer pdb);
#define CHECK_FAIL(name,fail) if(fail.code != NE_NOERROR) { \
printf("Error calling %s\n%s\n",name,fail.message); exit_status=-1; goto END; }
int main(void)
{
#define C(I,J) c[(J-1)*pdc + I-1]
Integer exit_status = 0;
NagError fail;
/* Scalars */
double t0, tend;
Integer a, d, pdb, pdc, pdz, nmove, npaths, ntimes, i ;
/* Arrays */
double *b = 0, *c = 0, *intime = 0, *rcomm = 0, *start = 0,
*term = 0, *times = 0, *z = 0;
Integer *move = 0;
INIT_FAIL(fail);
/* Parameters which determine the bridge */
ntimes = 10;
t0 = 0.0;
npaths = 2;
a = 0;
nmove = 0;
d = 3;
pdz = d*(ntimes+1-a);
pdb = d*(ntimes+1);
pdc = d;
/* Allocate memory */
if (
!( intime = NAG_ALLOC((ntimes), double)) ||
!( times = NAG_ALLOC((ntimes), double)) ||
!( rcomm = NAG_ALLOC((12 * (ntimes + 1)), double)) ||
!( start = NAG_ALLOC(d, double)) ||
!( term = NAG_ALLOC(d, double)) ||
!( c = NAG_ALLOC(pdc * d, double)) ||
!( z = NAG_ALLOC(pdz * npaths, double)) ||
!( b = NAG_ALLOC(pdb * npaths, double)) ||
!( move = NAG_ALLOC(nmove, Integer))
)
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Fix the time points at which the bridge is required */
for ( i=0; i<ntimes; i++)
{
intime[i] = t0 + (double)(i+1);
}
tend = t0 + (double)(ntimes + 1);
/* g05xec. Creates a Brownian bridge construction order */
/* out of a set of input times */
nag_rand_bb_make_bridge_order(Nag_RLRoundDown, t0, tend, ntimes, intime,
nmove, move, times, &fail);
CHECK_FAIL("nag_rand_bb_make_bridge_order",fail);
/* nag_rand_bb_init (g05xac). Initializes the Brownian bridge generator */
nag_rand_bb_init(t0, tend, times, ntimes, rcomm, &fail);
CHECK_FAIL("nag_rand_bb_init",fail);
/* We want the following covariance matrix*/
C( 1,1 ) = 6.0;
C( 2,1 ) = 1.0;
C( 3,1 ) = -0.2;
C( 1,2 ) = 1.0;
C( 2,2 ) = 5.0;
C( 3,2 ) = 0.3;
C( 1,3 ) = -0.2;
C( 2,3 ) = 0.3;
C( 3,3 ) = 4.0;
/* nag_rand_bb uses the Cholesky factorization of the covariance matrix C */
/* f07fdc. Cholesky factorization of real positive definite matrix */
nag_dpotrf(Nag_ColMajor, Nag_Lower, d, c, pdc, &fail);
CHECK_FAIL("nag_dpotrf",fail);
/* Generate the random numbers */
if( get_z(npaths*d*(ntimes+1-a), z) != 0)
{
printf("Error generating random numbers\n");
exit_status = -1;
goto END;
}
for(i=0; i<d; i++) start[i] = 0.0;
/* g05xbc. Generate paths for a free or non-free Wiener process using the */
/* Brownian bridge algorithm */
nag_rand_bb(Nag_RowMajor, npaths, d, start, a, term, z, pdz, c, pdc, b, pdb,
rcomm, &fail);
CHECK_FAIL("nag_rand_bb",fail);
/* Display the results*/
display_results(Nag_RowMajor, npaths, ntimes, d, b, pdb);
END:
;
NAG_FREE(b);
NAG_FREE(c);
NAG_FREE(intime);
NAG_FREE(rcomm);
NAG_FREE(start);
NAG_FREE(term);
NAG_FREE(times);
NAG_FREE(z);
NAG_FREE(move);
return exit_status;
}
int get_z(Integer nelements, double * z)
{
NagError fail;
Integer lseed, lstate, exit_status=0;
/* Arrays */
Integer seed[1];
Integer state[80];
lstate = 80;
lseed = 1;
INIT_FAIL(fail);
/* We now need to generate the input pseudorandom numbers */
seed[0] = 1023401;
/* g05kfc. Initializes a pseudorandom number generator */
/* to give a repeatable sequence */
nag_rand_init_repeatable(Nag_MRG32k3a, 0, seed, lseed, state, &lstate, &fail);
CHECK_FAIL("nag_rand_init_repeatable",fail);
/* g05skc. Generates a vector of pseudorandom numbers from */
/* a Normal distribution */
nag_rand_normal(nelements, 0.0, 1.0, state, z, &fail);
CHECK_FAIL("nag_rand_normal",fail);
END: return exit_status;
}
void display_results(Nag_OrderType order, Integer npaths, Integer ntimes,
Integer d, double *b, Integer pdb)
{
#define B(I,J) (order==Nag_RowMajor ? b[(I-1)*pdb+J-1]:b[(J-1)*pdb+I-1])
Integer i,p,k;
printf("nag_rand_bb_init (g05xac) Example Program Results\n\n");
for ( p=1; p<=npaths; p++)
{
printf("Wiener Path ");
printf("%1ld ", p);
printf(", ");
printf("%1ld ", ntimes + 1);
printf(" time steps, ");
printf("%1ld ", d);
printf(" dimensions \n");
for ( k=1; k<= d; k++)
{
printf("%10ld ", k);
}
printf("\n");
for (i=1; i<= ntimes+1; i++)
{
printf("%2ld ", i);
for (k=1; k<=d; k++)
{
printf("%10.4f", B(p, k + (i-1)*d));
}
printf("\n");
}
printf("\n");
}
}