/* nag_real_symm_sparse_eigensystem_init (f12fac) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 8, 2005.
*/
#include <nag.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <stdio.h>
#include <nagf12.h>
#include <nagf16.h>
static void tv(Integer, double *, double *);
static void av(Integer, double *, double *);
int main(void)
{
/* Constants */
Integer imon = 0;
/* Scalars */
double sigma = 0, estnrm;
Integer exit_status, irevcm, j, lcomm, licomm, n, nconv, ncv, nev;
Integer niter, nshift, nx;
/* Nag types */
NagError fail;
/* Arrays */
double *comm = 0, *eigv = 0, *eigest = 0;
double *resid = 0, *v = 0;
Integer *icomm = 0;
/* Ponters */
double *mx = 0, *x = 0, *y = 0;
exit_status = 0;
INIT_FAIL(fail);
printf("nag_real_symm_sparse_eigensystem_init (f12fac) Example "
"Program Results\n");
/* Skip heading in data file. */
scanf("%*[^\n] ");
/* Read values for nx, nev and cnv from data file. */
scanf("%ld%ld%ld%*[^\n] ", &nx, &nev, &ncv);
/* Allocate memory */
n = nx * nx;
if (!(eigv = NAG_ALLOC(ncv, double)) ||
!(eigest = NAG_ALLOC(ncv, double)) ||
!(resid = NAG_ALLOC(n, double)) ||
!(v = NAG_ALLOC(n * ncv, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Initialise communication arrays for problem using
nag_real_symm_sparse_eigensystem_init (f12fac).
The first call sets lcomm = licomm = -1 to perform a workspace
query. */
lcomm = licomm = -1;
if (!(comm = NAG_ALLOC(1, double)) ||
!(icomm = NAG_ALLOC(1, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
nag_real_symm_sparse_eigensystem_init(n, nev, ncv, icomm, licomm, comm,
lcomm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from "
"nag_real_symm_sparse_eigensystem_init (f12fac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
lcomm = (Integer)comm[0];
licomm = icomm[0];
NAG_FREE(comm);
NAG_FREE(icomm);
if (!(comm = NAG_ALLOC(lcomm, double)) ||
!(icomm = NAG_ALLOC(licomm, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
nag_real_symm_sparse_eigensystem_init(n, nev, ncv, icomm, licomm, comm,
lcomm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from "
"nag_real_symm_sparse_eigensystem_init (f12fac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Select the required spectrum using
nag_real_symm_sparse_eigensystem_option (f12fdc). */
nag_real_symm_sparse_eigensystem_option("smallest magnitude", icomm, comm,
&fail);
if (fail.code != NE_NOERROR)
{
printf(
"Error from nag_real_symm_sparse_eigensystem_option (f12fdc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Increase the iteration limit if required. */
nag_real_symm_sparse_eigensystem_option("iteration limit=500", icomm, comm,
&fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_real_symm_sparse_eigensystem_option "
"(f12fdc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
irevcm = 0;
REVCOMLOOP:
/* Repeated calls to reverse communication routine
nag_real_symm_sparse_eigensystem_iter (f12fbc). */
nag_real_symm_sparse_eigensystem_iter(&irevcm, resid, v, &x, &y, &mx,
&nshift, comm, icomm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_real_symm_sparse_eigensystem_iter "
"(f12fbc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
if (irevcm != 5)
{
if (irevcm == -1 || irevcm == 1)
{
/* Perform matrix vector multiplication y <--- Op*x */
av(nx, x, y);
}
else if (irevcm == 4 && imon == 1)
{
/* If imon=1, get monitoring information using
nag_real_symm_sparse_eigensystem_monit (f12fec). */
nag_real_symm_sparse_eigensystem_monit(&niter, &nconv, eigv, eigest,
icomm, comm);
/* Compute 2-norm of Ritz estimates using
nag_dge_norm (f16rac).*/
nag_dge_norm(Nag_ColMajor, Nag_FrobeniusNorm, nev, 1, eigest,
nev, &estnrm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_dge_norm (f16rac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("Iteration %3ld, ", niter);
printf(" No. converged = %3ld,", nconv);
printf(" norm of estimates = %17.8e\n", estnrm);
}
goto REVCOMLOOP;
}
if (fail.code == NE_NOERROR)
{
/* Post-Process using nag_real_symm_sparse_eigensystem_sol
(f12fcc) to compute eigenvalues/vectors. */
nag_real_symm_sparse_eigensystem_sol(&nconv, eigv, v, sigma, resid, v,
comm, icomm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_real_symm_sparse_eigensystem_sol "
"(f12fcc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
printf("\n\n The %4ld Ritz values", nconv);
printf(" of smallest magnitude are:\n\n");
for (j = 0; j <= nconv-1; ++j)
{
printf("%8ld%5s%12.4f\n", j+1, "", eigv[j]);
}
}
else
{
printf(" Error from nag_real_symm_sparse_eigensystem_iter "
"(f12fbc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
NAG_FREE(comm);
NAG_FREE(eigv);
NAG_FREE(eigest);
NAG_FREE(resid);
NAG_FREE(v);
NAG_FREE(icomm);
return exit_status;
}
static void av(Integer nx, double *v, double *w)
{
/* Scalars */
double nx2;
Integer j, lo;
/* Nag types */
NagError fail;
/* Function Body */
INIT_FAIL(fail);
nx2 = ((double)((nx + 1) * (nx + 1)));
tv(nx, v, w);
nag_daxpby(nx, -nx2, &v[nx], 1, nx2, w, 1, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_daxpby (f16ecc).\n%s\n",
fail.message);
goto END;
}
for (j = 1; j <= nx - 2; ++j)
{
lo = j * nx;
tv(nx, &v[lo], &w[lo]);
nag_daxpby(nx, -nx2, &v[lo-nx], 1, nx2, &w[lo], 1, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_daxpby (f16ecc).\n%s\n",
fail.message);
goto END;
}
nag_daxpby(nx, -nx2, &v[lo+nx], 1, 1.0, &w[lo], 1, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_daxpby (f16ecc).\n%s\n",
fail.message);
goto END;
}
}
lo = (nx - 1) * nx;
tv(nx, &v[lo], &w[lo]);
nag_daxpby(nx, -nx2, &v[lo-nx], 1, nx2, &w[lo], 1, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_daxpby (f16ecc).\n%s\n",
fail.message);
goto END;
}
END:
return;
} /* av */
static void tv(Integer nx, double *x, double *y)
{
/* Compute the matrix vector multiplication y<---T*x where T is a nx */
/* by nx tridiagonal matrix with constant diagonals (dd, dl and du). */
/* Scalars */
double dd, dl, du;
Integer j;
/* Function Body */
dd = 4.0;
dl = -1.0;
du = -1.0;
y[0] = dd * x[0] + du * x[1];
for (j = 1; j <= nx - 2; ++j)
{
y[j] = dl * x[j-1] + dd * x[j] + du * x[j+1];
}
y[nx-1] = dl * x[nx-2] + dd * x[nx-1];
return;
} /* tv */