/* nag_real_sparse_eigensystem_option (f12adc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 8, 2005.
*/
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <stdio.h>
#include <nagf12.h>
#include <nagf16.h>
static void mv(Integer, double *, double *);
static void my_dgttrf(Integer, double *, double *, double *,
double *, Integer *, Integer *);
static void my_dgttrs(Integer, double *, double *, double *,
double *, Integer *, double *, double *);
int main(void)
{
/* Constants */
Integer licomm = 140, imon = 0;
/* Scalars */
double estnrm, h, rho, s, s1, s2, s3, sigmai, sigmar;
Integer exit_status, info, irevcm, j, lcomm, n, nconv, ncv;
Integer nev, niter, nshift, nx;
/* Nag types */
NagError fail;
/* Arrays */
double *comm = 0, *dd = 0, *dl = 0, *du = 0, *du2 = 0, *eigvr = 0;
double *eigvi = 0, *eigest = 0, *resid = 0, *x2 = 0, *v = 0;
Integer *icomm = 0, *ipiv = 0;
/* Pointers */
double *mx = 0, *x = 0, *y = 0;
exit_status = 0;
INIT_FAIL(fail);
printf("nag_real_sparse_eigensystem_option (f12adc) Example "
"Program Results\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
/* Read problem parameter values from data file. */
scanf("%ld%ld%ld%lf%lf%lf%*[^\n] ", &nx, &nev, &ncv,
&rho, &sigmar, &sigmai);
n = nx * nx;
lcomm = 3*n + 3*ncv*ncv + 6*ncv + 60;
/* Allocate memory */
if (!(comm = NAG_ALLOC(lcomm, double)) ||
!(eigvr = NAG_ALLOC(ncv, double)) ||
!(eigvi = NAG_ALLOC(ncv, double)) ||
!(eigest = NAG_ALLOC(ncv, double)) ||
!(dd = NAG_ALLOC(n, double)) ||
!(dl = NAG_ALLOC(n, double)) ||
!(du = NAG_ALLOC(n, double)) ||
!(du2 = NAG_ALLOC(n, double)) ||
!(resid = NAG_ALLOC(n, double)) ||
!(v = NAG_ALLOC(n * ncv, double)) ||
!(x2 = NAG_ALLOC(n, double)) ||
!(icomm = NAG_ALLOC(licomm, Integer)) ||
!(ipiv = NAG_ALLOC(n, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Initialise communication arrays for problem using
nag_real_sparse_eigensystem_init (f12aac). */
nag_real_sparse_eigensystem_init(n, nev, ncv, icomm, licomm, comm,
lcomm, &fail);
if (fail.code != NE_NOERROR)
{
printf(
"Error from nag_real_sparse_eigensystem_init (f12aac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Select the required spectrum using
nag_real_sparse_eigensystem_option (f12adc). */
nag_real_sparse_eigensystem_option("SHIFTED REAL", icomm, comm, &fail);
if (fail.code != NE_NOERROR)
{
printf(
"Error from nag_real_sparse_eigensystem_init (f12aac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Select the problem type using
nag_real_sparse_eigensystem_option (f12adc). */
nag_real_sparse_eigensystem_option("GENERALIZED", icomm, comm, &fail);
/* Construct C = A - SIGMA*I, and factor C using my_dgttrf. */
h = 1.0 / (double)(n + 1);
s = rho / 2.0;
s1 = -1.0 / h - s - sigmar * h / 6.0;
s2 = 2.0 / h - sigmar * 4.0 * h / 6.0;
s3 = -1.0 / h + s - sigmar * h / 6.0;
for (j = 0; j <= n - 2; ++j)
{
dl[j] = s1;
dd[j] = s2;
du[j] = s3;
}
dd[n - 1] = s2;
my_dgttrf(n, dl, dd, du, du2, ipiv, &info);
irevcm = 0;
REVCOMLOOP:
/* repeated calls to reverse communication routine
nag_real_sparse_eigensystem_iter (f12abc). */
nag_real_sparse_eigensystem_iter(&irevcm, resid, v, &x, &y, &mx,
&nshift, comm, icomm, &fail);
if (irevcm != 5)
{
if (irevcm == -1)
{
/* Perform y <--- OP*x = inv[A-SIGMA*M]*M*x using
my_dggtrs */
mv(n, x, x2);
my_dgttrs(n, dl, dd, du, du2, ipiv, x2, y);
}
else if (irevcm == 1)
{
/* Perform y <--- OP*x = inv[A-SIGMA*M]*M*x where
mx is available. */
my_dgttrs(n, dl, dd, du, du2, ipiv, mx, y);
}
else if (irevcm == 2)
{
/* Perform y <--- M*x */
mv(n, x, y);
}
else if (irevcm == 4 && imon == 1)
{
/* If imon=1, get monitoring information using
nag_real_sparse_eigensystem_monit (f12aec). */
nag_real_sparse_eigensystem_monit(&niter, &nconv, eigvr,
eigvi, eigest, icomm, comm);
/* Compute 2-norm of Ritz estimates using
nag_dge_norm (f16rac).*/
nag_dge_norm(Nag_ColMajor, Nag_FrobeniusNorm, nev, 1, eigest,
nev, &estnrm, &fail);
printf("Iteration %3ld, ", niter);
printf(" No. converged = %3ld,", nconv);
printf(" norm of estimates = %17.8e\n", estnrm);
}
goto REVCOMLOOP;
}
if (fail.code == NE_NOERROR)
{
/* Post-Process using nag_real_sparse_eigensystem_sol
(f12acc) to compute eigenvalues/vectors. */
nag_real_sparse_eigensystem_sol(&nconv, eigvr, eigvi, v, sigmar,
sigmai, resid, v, comm, icomm,
&fail);
/* Print computed eigenvalues. */
printf("\n The %4ld generalized Ritz values closest", nconv);
printf(" to unity are:\n\n");
for (j = 0; j <= nconv-1; ++j)
{
printf("%8ld%5s( %12.4f ,%12.4f )\n", j+1, "",
sigmar + 1.0/eigvr[j], eigvi[j]);
}
}
else
{
printf(
" Error from nag_real_sparse_eigensystem_iter (f12abc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
END:
NAG_FREE(comm);
NAG_FREE(eigvr);
NAG_FREE(eigvi);
NAG_FREE(eigest);
NAG_FREE(dd);
NAG_FREE(dl);
NAG_FREE(du);
NAG_FREE(du2);
NAG_FREE(resid);
NAG_FREE(v);
NAG_FREE(icomm);
NAG_FREE(ipiv);
NAG_FREE(x2);
return exit_status;
}
static void mv(Integer n, double *v, double *y)
{
/* Compute the matrix vector multiplication Y<---M*X, where M is
mass matrix formed by using piecewise linear elements on [0,1]. */
/* Scalars */
double h;
Integer j;
/* Function Body */
h = 1.0 / (double)(6*(n + 1));
y[0] = h*(v[0] * 4.0 + v[1]);
for (j = 1; j <= n - 2; ++j)
{
y[j] = h*(v[j-1] + v[j] * 4.0 + v[j+1]);
}
y[n-1] = h*(v[n-2] + v[n-1] * 4.0);
return;
} /* mv */
static void my_dgttrf(Integer n, double dl[], double d[],
double du[], double du2[], Integer ipiv[],
Integer *info)
{
/* A simple C version of the Lapack routine dgttrf with argument
checking removed */
/* Scalars */
double temp, fact;
Integer i;
/* Function Body */
*info = 0;
for (i = 0; i < n; ++i)
{
ipiv[i] = i;
}
for (i = 0; i < n - 2; ++i)
{
du2[i] = 0.0;
}
for (i = 0; i < n - 2; i++)
{
if (fabs(d[i]) >= fabs(dl[i]))
{
/* No row interchange required, eliminate dl[i]. */
if (d[i] != 0.0)
{
fact = dl[i] / d[i];
dl[i] = fact;
d[i+1] = d[i+1] - fact * du[i];
}
}
else
{
/* Interchange rows I and I+1, eliminate dl[I] */
fact = d[i] / dl[i];
d[i] = dl[i];
dl[i] = fact;
temp = du[i];
du[i] = d[i+1];
d[i+1] = temp - fact*d[i+1];
du2[i] = du[i+1];
du[i+1] = -fact * du[i+1];
ipiv[i] = i + 1;
}
}
if (n > 1)
{
i = n - 2;
if (fabs(d[i]) >= fabs(dl[i]))
{
if (d[i] != 0.0)
{
fact = dl[i] / d[i];
dl[i] = fact;
d[i+1] = d[i+1] - fact * du[i];
}
}
else
{
fact = d[i] / dl[i];
d[i] = dl[i];
dl[i] = fact;
temp = du[i];
du[i] = d[i+1];
d[i+1] = temp - fact * d[i+1];
ipiv[i] = i + 1;
}
}
/* Check for a zero on the diagonal of U. */
for (i = 0; i < n; ++i)
{
if (d[i] == 0.0)
{
*info = i;
goto END;
}
}
END:
return;
}
static void my_dgttrs(Integer n, double dl[], double d[],
double du[], double du2[], Integer ipiv[],
double b[], double y[])
{
/* A simple C version of the Lapack routine dgttrs with argument
checking removed, the number of right-hand-sides=1, Trans='N' */
/* Scalars */
Integer i, ip;
double temp;
/* Solve L*x = b. */
for (i = 0; i <= n - 1; ++i)
{
y[i] = b[i];
}
for (i = 0; i < n - 1; ++i)
{
ip = ipiv[i];
temp = y[i+1-ip+i] - dl[i]*y[ip];
y[i] = y[ip];
y[i+1] = temp;
}
/* Solve U*x = b. */
y[n-1] = y[n-1] / d[n-1];
if (n > 1)
{
y[n-2] = (y[n-2] - du[n-2]*y[n-1])/d[n-2];
}
for (i = n - 3; i >= 0; --i)
{
y[i] = (y[i]-du[i]*y[i+1]-du2[i]*y[i+2])/d[i];
}
return;
}