/* nag_sparse_sym_precon_ssor_solve (f11jdc) Example Program.
 *
 * Copyright 2014 Numerical Algorithms Group.
 *
 * Mark 23, 2011.
 */
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf11.h>
int main(void)
{
  /* Scalars */
  Integer                   exit_status = 0;
  double                    anorm, omega, sigerr, sigmax, sigtol, stplhs,
                            stprhs, tol;
  Integer                   i, irevcm, iterm, itn, its, j, listr, lcneed, lcomm,
                            maxitn, maxits, monit, n, nnz, nnz1;
  /* Arrays */
  char                      nag_enum_arg[100];
  double                    *a = 0, *b = 0, *rdiag = 0, *wgt = 0,
                            *commarray = 0, *x = 0;
  Integer                   *icol = 0, *irow = 0, *istr = 0;
  /* NAG types */
  Nag_NormType              norm;
  Nag_SparseNsym_Method     method;
  Nag_SparseNsym_PrecType   precon;
  Nag_SparseSym_Bisection   sigcmp;
  Nag_SparseSym_CheckData   ckjd, ckxe;
  Nag_SparseSym_Dups        dup;
  Nag_SparseSym_Weight      weight;
  Nag_SparseSym_Zeros       zero;
  NagError                  fail, fail1;

  INIT_FAIL(fail);

  printf("nag_sparse_sym_precon_ssor_solve (f11jdc) Example Program Results");
  printf("\n\n");
  /* Skip heading in data file*/
  scanf("%*[^\n]");
  /* Read algorithmic parameters*/
  scanf("%ld%*[^\n]", &n);
  scanf("%ld%*[^\n]", &nnz);

  /* Allocate memory */
  listr = n + 1;
  lcomm = 6 * n + 120;
  if (
      !(a = NAG_ALLOC(nnz, double)) ||
      !(b = NAG_ALLOC(n, double)) ||
      !(rdiag = NAG_ALLOC(n, double)) ||
      !(wgt = NAG_ALLOC(n, double)) ||
      !(commarray = NAG_ALLOC(lcomm, double)) ||
      !(x = NAG_ALLOC(n, double)) ||
      !(icol = NAG_ALLOC(nnz, Integer)) ||
      !(irow = NAG_ALLOC(nnz, Integer)) ||
      !(istr = NAG_ALLOC(listr, Integer))
      )
    {
      printf("Allocation failure\n");
      exit_status = -1;
      goto END;
    }
  scanf("%99s%*[^\n] ", nag_enum_arg);
  /* nag_enum_name_to_value (x04nac).
   * Converts NAG enum member name to value
   */
  method = (Nag_SparseNsym_Method) nag_enum_name_to_value(nag_enum_arg);
  scanf("%99s%*[^\n] ", nag_enum_arg);
  precon = (Nag_SparseNsym_PrecType) nag_enum_name_to_value(nag_enum_arg);
  scanf("%99s%*[^\n] ", nag_enum_arg);
  sigcmp = (Nag_SparseSym_Bisection) nag_enum_name_to_value(nag_enum_arg);
  scanf("%99s%*[^\n] ", nag_enum_arg);
  norm = (Nag_NormType) nag_enum_name_to_value(nag_enum_arg);
  scanf("%ld%*[^\n] ", &iterm);
  scanf("%lf%ld%*[^\n]", &tol, &maxitn);
  scanf("%lf%lf%*[^\n]", &anorm, &sigmax);
  scanf("%lf%ld%*[^\n]", &sigtol, &maxits);
  scanf("%lf%*[^\n]", &omega);

  /* Read the matrix a */
  for (i = 0; i <= nnz-1; i++)
    scanf("%lf%"NAG_IFMT "%"NAG_IFMT "%*[^\n] ", &a[i], &irow[i], &icol[i]);

  /* Sort matrix a removing zero or duplicate elements using
   * nag_sparse_sym_sort (f11zbc).
   */
  nnz1 = nnz;
  dup = Nag_SparseSym_RemoveDups;
  zero = Nag_SparseSym_RemoveZeros;
  nag_sparse_sym_sort (n, &nnz1, a, irow, icol, dup, zero, istr, &fail);
  if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_sparse_sym_sort (f11zbc).\n%s\n", fail.message);
      exit_status = 1;
      goto END;
    }
  if (nnz != nnz1)
    {
      printf("Warning, input Matrix has zero or duplicate elements\n");
      printf("         nnz has been reduced from %ld to %ld\n",
             nnz,nnz1);
      nnz = nnz1;
    }

  /* Check for zero diagonal matrix elements and calculate reciprocals.*/
  for (i = 0; i < n; i++)
    {
      /* j points to last element in row i */
      j = istr[i+1]-2;
      if (irow[j] == icol[j])
        rdiag[irow[j]-1] = 1.0/a[j];
      else
        {
          printf("Matrix has a missing element for diagonal %ld\n",i);
          goto END;
        }
    }

  /* Read right-hand side vector b and initial approximate solution x*/
  for (i = 0; i <= n-1; i++)
    scanf("%lf", &b[i]);
  scanf("%*[^\n]");
  for (i = 0; i <= n-1; i++)
    scanf("%lf", &x[i]);

  /* Initialize the basic symmteric solver (f11gec) using
   * nag_sparse_sym_basic_setup (f11gdc)
   */
  weight = Nag_SparseSym_UnWeighted;
  monit = 0;
  nag_sparse_sym_basic_setup(method, precon, sigcmp, norm, weight, iterm, n,
                             tol, maxitn, anorm, sigmax, sigtol, maxits,
                             monit, &lcneed, commarray, lcomm, &fail);
  if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_sparse_sym_setup (f11gdc).\n%s\n", fail.message);
      exit_status = 2;
      goto END;
    }

  /* call solver repeatedly to solve the equations */
  irevcm = 0;
  ckxe = Nag_SparseSym_Check;
  ckjd = Nag_SparseSym_Check;
  while (1)
    {
      /* nag_sparse_sym_basic_solver (f11gec).
       * Real sparse symmetric linear systems, preconditioned conjugate gradient
       * or Lanczos method.
       */
      nag_sparse_sym_basic_solver(&irevcm, x, b, wgt, commarray, lcomm, &fail);
      if (irevcm != 4)
        {
          INIT_FAIL(fail1);
          switch (irevcm)
            {
            case 1:
              /* Compute sparse symmetric matrix vector product using
               * nag_sparse_sym_matvec (f11xec).
               */
              nag_sparse_sym_matvec(n, nnz, a, irow, icol, ckxe, x, b, &fail1);
              ckxe = Nag_SparseSym_NoCheck;
              break;
            case 2:
              /* SSOR preconditioning
               * nag_sparse_sym_precon_ssor_solve (f11jdc).
               * Solution of linear system involving preconditioning matrix
               * generated by applying SSOR to real sparse symmetric matrix
               */
              nag_sparse_sym_precon_ssor_solve(n, nnz, a, irow, icol, rdiag,
                                               omega, ckjd, x, b, &fail1);
              ckjd = Nag_SparseSym_NoCheck;
            }
          if (fail1.code != NE_NOERROR)
            irevcm = 6;
        }
      else if (fail.code != NE_NOERROR)
        {
          printf("Error from nag_sparse_sym_basic_solver (f11gec).\n%s\n",
                 fail.message);
          exit_status = 3;
          goto END;
        } else goto END_LOOP;
    }
 END_LOOP:
  /* Obtain and print diagnostic statistics using
   * nag_sparse_sym_basic_diagnostic (f11gfc).
   */
  nag_sparse_sym_basic_diagnostic(&itn, &stplhs, &stprhs, &anorm, &sigmax,
                                  &its, &sigerr, commarray, lcomm, &fail);
  if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_sparse_sym_basic_diagnostic (f11gfc).\n%s\n",
             fail.message);
      exit_status = 4;
      goto END;
    }
  printf("Converged in   %10ld iterations \n", itn);
  printf("Final residual norm = %11.3e\n\n", stplhs);
  /* Output solution */
  printf("%16s\n","Solution");
  for (i = 0; i <= n - 1; i++)
    printf("%16.4e\n", x[i]);

 END:
  NAG_FREE(a);
  NAG_FREE(b);
  NAG_FREE(rdiag);
  NAG_FREE(wgt);
  NAG_FREE(commarray);
  NAG_FREE(x);
  NAG_FREE(icol);
  NAG_FREE(irow);
  NAG_FREE(istr);
  return exit_status;
}