/* nag_zggev (f08wnc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 23, 2011.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf08.h>
#include <nagx02.h>
#include <nagx04.h>
int main(void)
{
/* Scalars */
Complex z;
double small;
Integer i, j, n, pda, pdb, pdvl, pdvr;
Integer exit_status = 0;
/* Arrays */
Complex *a = 0, *alpha = 0, *b = 0, *beta = 0, *vl = 0, *vr = 0;
char nag_enum_arg[40];
/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_LeftVecsType jobvl;
Nag_RightVecsType jobvr;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]
#define B(I, J) b[(J-1)*pdb + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]
#define B(I, J) b[(I-1)*pdb + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_zggev (f08wnc) Example Program Results\n");
/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%ld%*[^\n]", &n);
if (n < 0)
{
printf("Invalid n\n");
exit_status = 1;
goto END;
}
scanf(" %39s%*[^\n]", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
jobvl = (Nag_LeftVecsType) nag_enum_name_to_value(nag_enum_arg);
scanf(" %39s%*[^\n]", nag_enum_arg);
jobvr = (Nag_RightVecsType) nag_enum_name_to_value(nag_enum_arg);
pda = n;
pdb = n;
pdvl = (jobvl==Nag_LeftVecs?n:1);
pdvr = (jobvr==Nag_RightVecs?n:1);
/* Allocate memory */
if (!(a = NAG_ALLOC(n*n, Complex)) ||
!(alpha = NAG_ALLOC(n, Complex)) ||
!(b = NAG_ALLOC(n*n, Complex)) ||
!(beta = NAG_ALLOC(n, Complex)) ||
!(vl = NAG_ALLOC(pdvl*pdvl, Complex)) ||
!(vr = NAG_ALLOC(pdvr*pdvr, Complex)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read in the matrices A and B */
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
scanf("%*[^\n]");
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
scanf("%*[^\n]");
/* Solve the generalized eigenvalue problem using nag_zggev (f08wnc). */
nag_zggev(order, jobvl, jobvr, n, a, pda, b, pdb, alpha, beta, vl, pdvl, vr,
pdvr, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_zggev (f08wnc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_real_safe_small_number (x02amc). */
small = nag_real_safe_small_number;
printf("\n Eigenvalues\n");
for (j = 0; j < n; ++j)
{
if (nag_complex_abs(alpha[j]) * small >= nag_complex_abs(beta[j]))
{
printf("%2ld numerically infinite or undetermined\n", j+1);
printf(" alpha = (%9.4f, %9.4f), beta = (%9.4f, %9.4f)\n",
alpha[j].re, alpha[j].im, beta[j].re, beta[j].im);
}
else
{
z = nag_complex_divide(alpha[j], beta[j]);
printf("%2ld (%13.4e, %13.4e)\n", j+1, z.re, z.im);
}
}
if (jobvl==Nag_LeftVecs) {
printf("\n");
/* Print left eigenvectors using nag_gen_complx_mat_print (x04dac). */
fflush(stdout);
nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
n, vl, pdvl, " Left eigenvectors (columns)",
0, &fail);
}
if ( jobvr==Nag_RightVecs && fail.code == NE_NOERROR) {
printf("\n");
/* Print rightt eigenvectors using nag_gen_complx_mat_print (x04dac). */
fflush(stdout);
nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
n, vr, pdvr, " Right eigenvectors (columns)",
0, &fail);
}
if (fail.code != NE_NOERROR)
{
printf("Error from nag_gen_complx_mat_print (x04dac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
END:
NAG_FREE(a);
NAG_FREE(alpha);
NAG_FREE(b);
NAG_FREE(beta);
NAG_FREE(vl);
NAG_FREE(vr);
return exit_status;
}