/* nag_dspsvx (f07pbc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 23, 2011.
*/
#include <stdio.h>
#include <nag.h>
#include <nagx04.h>
#include <nag_stdlib.h>
#include <nagf07.h>
int main(void)
{
/* Scalars */
double rcond;
Integer exit_status = 0, i, j, n, nrhs, pdb, pdx;
/* Arrays */
double *afp = 0, *ap = 0, *b = 0, *berr = 0, *ferr = 0, *x = 0;
Integer *ipiv = 0;
char nag_enum_arg[40];
/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_UploType uplo;
#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I, J) ap[J*(J-1)/2 + I - 1]
#define A_LOWER(I, J) ap[(2*n-J)*(J-1)/2 + I - 1]
#define B(I, J) b[(J-1)*pdb + I - 1]
order = Nag_ColMajor;
#else
#define A_LOWER(I, J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I, J) ap[(2*n-I)*(I-1)/2 + J - 1]
#define B(I, J) b[(I-1)*pdb + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_dspsvx (f07pbc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%ld%ld%*[^\n]", &n, &nrhs);
if (n < 0 || nrhs < 0)
{
printf("Invalid n or nrhs\n");
exit_status = 1;
goto END;
}
scanf(" %39s%*[^\n]", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);
/* Allocate memory */
if (!(afp = NAG_ALLOC(n*(n+1)/2, double)) ||
!(ap = NAG_ALLOC(n*(n+1)/2, double)) ||
!(b = NAG_ALLOC(n * nrhs, double)) ||
!(berr = NAG_ALLOC(nrhs, double)) ||
!(ferr = NAG_ALLOC(nrhs, double)) ||
!(x = NAG_ALLOC(n * nrhs, double)) ||
!(ipiv = NAG_ALLOC(n, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
#ifdef NAG_COLUMN_MAJOR
pdb = n;
pdx = n;
#else
pdb = nrhs;
pdx = nrhs;
#endif
/* Read the triangular part of the matrix A from data file */
if (uplo == Nag_Upper)
for (i = 1; i <= n; ++i)
for (j = i; j <= n; ++j) scanf("%lf", &A_UPPER(i, j));
else if (uplo == Nag_Lower)
for (i = 1; i <= n; ++i)
for (j = 1; j <= i; ++j) scanf("%lf", &A_LOWER(i, j));
scanf("%*[^\n]");
/* Read B from data file */
for (i = 1; i <= n; ++i)
for (j = 1; j <= nrhs; ++j) scanf("%lf", &B(i, j));
scanf("%*[^\n]");
/* Solve the equations AX = B for X using nag_dspsvx (f07pbc). */
nag_dspsvx(order, Nag_NotFactored, uplo, n, nrhs, ap, afp, ipiv, b, pdb,
x, pdx, &rcond, ferr, berr, &fail);
if (fail.code != NE_NOERROR && fail.code != NE_SINGULAR)
{
printf("Error from nag_dspsvx (f07pbc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print solution using nag_gen_real_mat_print (x04cac). */
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x,
pdx, "Solution(s)", 0, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print error bounds and condition number */
printf("\nBackward errors (machine-dependent)\n");
for (j = 0; j < nrhs; ++j) printf("%11.1e%s", berr[j], j%7 == 6?"\n":" ");
printf("\n\nEstimated forward error bounds (machine-dependent)\n");
for (j = 0; j < nrhs; ++j) printf("%11.1e%s", ferr[j], j%7 == 6?"\n":" ");
printf("\n\nEstimate of reciprocal condition number\n%11.1e\n", rcond);
if (fail.code == NE_SINGULAR)
{
printf("Error from nag_dspsvx (f07pbc).\n%s\n", fail.message);
exit_status = 1;
}
END:
NAG_FREE(afp);
NAG_FREE(ap);
NAG_FREE(b);
NAG_FREE(berr);
NAG_FREE(ferr);
NAG_FREE(x);
NAG_FREE(ipiv);
return exit_status;
}
#undef A_UPPER
#undef A_LOWER
#undef B