/* nag_zgbequ (f07btc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 23, 2011.
*/
#include <stdio.h>
#include <nag.h>
#include <nagx04.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx02.h>
int main(void)
{
/* Scalars */
double amax, big, colcnd, rowcnd, small;
Integer exit_status = 0, i, j, kl, ku, n, pdab;
/* Arrays */
Complex *ab = 0;
double *c = 0, *r = 0;
/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_Boolean scaled = Nag_FALSE;
#ifdef NAG_COLUMN_MAJOR
#define AB(I, J) ab[(J-1)*pdab + ku + I - J]
order = Nag_ColMajor;
#else
#define AB(I, J) ab[(I-1)*pdab + kl + J - I]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_zgbequ (f07btc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
scanf("%ld%ld%ld%*[^\n]", &n, &kl, &ku);
if (n < 0 || kl < 0 || ku < 0)
{
printf("Invalid n or kl or ku\n");
exit_status = 1;
goto END;
}
/* Allocate memory */
if (!(ab = NAG_ALLOC((kl+ku+1) * n, Complex)) ||
!(c = NAG_ALLOC(n, double)) ||
!(r = NAG_ALLOC(n, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
pdab = kl+ku+1;
/* Read the band matrix A from data file */
for (i = 1; i <= n; ++i)
for (j = MAX(i - kl, 1); j <= MIN(i + ku, n); ++j)
scanf(" ( %lf , %lf )", &AB(i, j).re, &AB(i, j).im);
scanf("%*[^\n]");
/* Print the matrix A using nag_band_complx_mat_print (x04dec). */
fflush(stdout);
nag_band_complx_mat_print(order, n, n, kl, ku, ab, pdab, "Matrix A", 0,
&fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_band_complx_mat_print (x04dec).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\n");
/* Compute row and column scaling factors using nag_zgbequ (f07btc). */
nag_zgbequ(order, n, n, kl, ku, ab, pdab, r, c, &rowcnd, &colcnd, &amax,
&fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_zgbequ (f07btc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print rowcnd, colcnd, amax and the scale factors */
printf("rowcnd = %10.1e, colcnd = %10.1e, amax = %10.1e\n\n", rowcnd,
colcnd, amax);
printf("Row scale factors\n");
for (i = 1; i <= n; ++i) printf("%11.2e%s", r[i-1], i%7 == 0?"\n":" ");
printf("\n\nColumn scale factors\n");
for (i = 1; i <= n; ++i) printf("%11.2e%s", c[i-1], i%7 == 0?"\n":" ");
printf("\n\n");
/* Compute values close to underflow and overflow using
* nag_real_safe_small_number (x02amc), nag_machine_precision (x02ajc) and
* nag_real_base (x02bhc)
*/
small = nag_real_safe_small_number / (nag_machine_precision * nag_real_base);
big = 1. / small;
if (colcnd < 0.1)
{
scaled = Nag_TRUE;
/* column scale A */
for (j = 1; j <= n; ++j)
for (i = MAX(1, j - ku); i <= MIN(n, j + kl); ++i)
{
AB(i, j).re *= c[j - 1];
AB(i, j).im *= c[j - 1];
}
}
if (rowcnd < 0.1 || amax < small || amax > big)
{
/* row scale A */
scaled = Nag_TRUE;
for (j = 1; j <= n; ++j)
for (i = MAX(1, j - ku); i <= MIN(n, j + kl); ++i)
{
AB(i, j).re *= r[i-1];
AB(i, j).im *= r[i-1];
}
}
if (scaled)
{
/* Print the row and column scaled matrix using
* nag_band_complx_mat_print (x04dec).
*/
fflush(stdout);
nag_band_complx_mat_print(order, n, n, kl, ku, ab, pdab, "Scaled matrix",
0, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_band_complx_mat_print (x04dec).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
}
END:
NAG_FREE(ab);
NAG_FREE(c);
NAG_FREE(r);
return exit_status;
}
#undef AB