/* nag_dgeequ (f07afc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 23, 2011.
*/
#include <stdio.h>
#include <nag.h>
#include <nagx04.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx02.h>
int main(void)
{
/* Scalars */
double amax, big, colcnd, rowcnd, small;
Integer i, j, m, n, pda;
Integer exit_status = 0;
/* Arrays */
double *a = 0, *c = 0, *r = 0;
/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_Boolean scaled = Nag_FALSE;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_dgeequ (f07afc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%ld%*[^\n]", &n);
if (n < 0)
{
printf("Invalid n\n");
exit_status = 1;
return exit_status;
}
m = n;
#ifdef NAG_COLUMN_MAJOR
pda = m;
#else
pda = n;
#endif
/* Allocate memory */
if (!(a = NAG_ALLOC(m*n, double)) ||
!(c = NAG_ALLOC(n, double)) ||
!(r = NAG_ALLOC(m, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read the N by N matrix A from data file */
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j) scanf("%lf", &A(i, j));
scanf("%*[^\n]");
/* Print the matrix A using nag_gen_real_mat_print (x04cac) */
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a,
pda, "Matrix A", 0, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
printf("\n");
/* Compute row and column scaling factors using nag_dgeequ (f07afc) */
nag_dgeequ(order, m, n, a, pda, r, c, &rowcnd, &colcnd, &amax, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_dgeequ (f07afc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print rowcnd, colcnd, amax and the scale factors */
printf("rowcnd = %10.1e, colcnd = %10.1e, amax = %10.1e\n\n", rowcnd,
colcnd, amax);
printf("Row scale factors\n");
for (i = 1; i <= n; ++i)
printf("%11.2e%s", r[i-1], i%7 == 0?"\n":" ");
printf("\n\nColumn scale factors\n");
for (i = 1; i <= n; ++i)
printf("%11.2e%s", c[i-1], i%7 == 0?"\n":" ");
printf("\n\n");
/* Compute values close to underflow and overflow using
* nag_real_safe_small_number (x02amc), nag_machine_precision (x02ajc) and
* nag_real_base (x02bhc)
*/
small = nag_real_safe_small_number / nag_machine_precision * nag_real_base;
big = 1.0 / small;
if (colcnd < 0.1)
{
scaled = Nag_TRUE;
/* column scale A */
for (j = 1; j <= n; ++j)
for (i = 1; i <= n; ++i) A(i, j) = A(i, j) * c[j - 1];
}
if (rowcnd < 0.1 || amax < small || amax > big)
{
/* row scale A */
scaled = Nag_TRUE;
for (j = 1; j <= n; ++j)
for (i = 1; i <= n; ++i) A(i, j) = r[i-1] * A(i, j);
}
if (scaled)
{
/* Print the row and column scaled matrix using
* nag_gen_real_mat_print (x04cac)
*/
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
a, pda, "Scaled matrix", 0, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
}
END:
NAG_FREE(a);
NAG_FREE(c);
NAG_FREE(r);
return exit_status;
}