/* nag_matop_complex_gen_matrix_cond_num (f01kbc) Example Program.
 *
 * Copyright 2014 Numerical Algorithms Group.
 *
 * Mark 24, 2013.
 */
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf01.h>
#include <nagx02.h>
#include <nagx04.h>

#ifdef __cplusplus
extern "C" {
#endif
   static void NAG_CALL f(Integer *iflag, Integer nz, const Complex z[],
                          Complex fz[], Nag_Comm *comm);
#ifdef __cplusplus
}
#endif

#define A(I,J) a[J*pda + I]

int main(void)
{

  /* Scalars */
  Integer        exit_status = 0;
  Integer        i, iflag, j, n, pda;
  double         conda, cond_rel, eps, norma, normfa;
  /* Arrays */
  static double ruser[1] = {-1.0};
  Complex        *a = 0;
  /* Nag Types */
  Nag_OrderType  order = Nag_ColMajor;
  Nag_Comm       comm;
  NagError       fail;

  INIT_FAIL(fail);

  /* Output preamble */
  printf("nag_matop_complex_gen_matrix_cond_num (f01kbc) ");
  printf("Example Program Results\n\n");

  /* For communication with user-supplied functions: */
  comm.user = ruser;

  fflush(stdout);

  /* Skip heading in data file */
  scanf("%*[^\n] ");

  /* Read in the problem size */
  scanf("%ld%*[^\n]", &n);

  pda = n;
  if (!(a = NAG_ALLOC((pda)*(n), Complex))) {
    printf("Allocation failure\n");
    exit_status = -1;
    goto END;
  }

  /* Read in the matrix A from data file */
  for (i = 0; i < n; i++)
    for (j = 0; j < n; j++)
      scanf(" ( %lf , %lf ) ", &A(i, j).re, &A(i, j).im);
  scanf("%*[^\n] ");

  /* Print matrix A using nag_gen_complx_mat_print (x04dac):
   *   Print complex general matrix (easy-to-use)
   */ 
   nag_gen_complx_mat_print (order, Nag_GeneralMatrix, Nag_NonUnitDiag,
                           n, n, a, pda, "A", NULL, &fail);
   if (fail.code != NE_NOERROR) {
     printf("Error from nag_gen_complx_mat_print (x04dac)\n%s\n", fail.message);
     exit_status = 2;
     goto END;
   }

  /* Find absolute condition number estimate of f(A) for a complex matrix A
   * using ... nag_matop_complex_gen_matrix_cond_num (f01kbc):
   *   Condition number for general function of a complex matrix
   *   using numerical differentiation.
   */
  nag_matop_complex_gen_matrix_cond_num (n, a, pda, f, &comm, &iflag,
                                      &conda, &norma, &normfa, &fail);
  if (fail.code != NE_NOERROR) {
    printf("Error from nag_matop_complex_gen_matrix_cond_num (f01kbc)\n%s\n",
           fail.message);
    exit_status = 1;
    goto END;
  }

  /* Print absolute condition number estimate */
  printf("\nF(A) = sin(2A)\n");
  printf("Estimated absolute condition number is: %7.2f\n",conda);

  /* nag_machine_precision (x02ajc) The machine precision */
  eps = nag_machine_precision;

  /* Find relative condition number estimate */
  if ( normfa>eps) {
    cond_rel = conda * norma/normfa;
    printf("Estimated relative condition number is: %7.2f\n",cond_rel);
  }
  else {
    printf("The estimated norm of f(A) is effectively zero");
    printf("and so the relative condition number is undefined.\n");
  }

 END:
  NAG_FREE(a);
  return exit_status;
}

static void NAG_CALL f(Integer *iflag, Integer nz, const Complex z[],
                       Complex fz[], Nag_Comm *comm)
{
  /* Scalars */
  Integer j;
#pragma omp master
  if (comm->user[0] == -1.0)
    {
      printf("(User-supplied callback f, first invocation.)\n");
      comm->user[0] = 0.0;
    }
  for (j = 0; j < nz; j++) {
    /* Complex representation of sin(2z). */
    fz[j].re = sin(2.0*z[j].re)*cosh(2.0*z[j].im);
    fz[j].im = cos(2.0*z[j].re)*sinh(2.0*z[j].im);
  }
  /* Set iflag nonzero to terminate execution for any reason. */
  *iflag = 0;
}