/* nag_matop_complex_herm_matrix_fun (f01ffc) Example Program.
 *
 * Copyright 2014 Numerical Algorithms Group.
 *
 * Mark 23, 2011.
 */
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf01.h>
#include <nagx04.h>

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL f(Integer *flag, Integer n, const double x[],
                       double fx[], Nag_Comm *comm);
#ifdef __cplusplus
}
#endif

int main(void)
{
  /* Scalars */
  char           *outfile = 0;
  Integer        exit_status = 0;
  double         k = 1.0;
  Integer        i, flag, j, n, pda;

  /* Arrays */
  char           uplo_c[40];
  Integer        iuser[1];
  double         user[1];
  Complex        *a = 0;

  /* NAG types */
  Nag_Comm       comm;
  NagError       fail;
  Nag_UploType   uplo;
  Nag_MatrixType matrix;
  Nag_OrderType  order;

  INIT_FAIL(fail);

  /* Communicate constant k and initialize function counter through comm */
  comm.user = user;
  comm.iuser = iuser;
  user[0] = k;
  iuser[0] = 0;

  printf("nag_matop_complex_herm_matrix_fun (f01ffc) Example Program Results");
  printf("\n\n");
  fflush(stdout);

  /* Read matrix dimension and storage from data file*/
  scanf("%*[^\n]%ld%*[^\n] %39s%*[^\n]", &n, uplo_c);
  /* nag_enum_name_to_value (x04nac).
   * Converts NAG enum member name to value
   */
  uplo = (Nag_UploType) nag_enum_name_to_value(uplo_c);

  pda = n;
  if (!(a = NAG_ALLOC((pda)*(n), Complex)))
    {
      printf("Allocation failure\n");
      exit_status = -1;
      goto END;
    }

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I-1]
  order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J-1]
  order = Nag_RowMajor;
#endif

  /* Read A from data file*/
  if (uplo == Nag_Upper)
    {
      matrix = Nag_UpperMatrix;
      for (i = 1; i <= n; i++)
        for (j = i; j <= n; j++)
          scanf(" ( %lf , %lf ) ", &A(i, j).re, &A(i, j).im);
    }
  else
    {
      matrix = Nag_LowerMatrix;
      for (i = 1; i <= n; i++)
        for (j = 1; j <= i; j++)
          scanf(" ( %lf , %lf ) ", &A(i, j).re, &A(i, j).im);
    }
  scanf("%*[^\n]");

  /* nag_matop_complex_herm_matrix_fun (f01ffc).
   * Function of a complex Hermitian matrix
   */
  nag_matop_complex_herm_matrix_fun(order, uplo, n, a, pda, f, &comm, &flag,
                                    &fail);
  if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_matop_complex_herm_matrix_fun (f01ffc).\n%s\n",
             fail.message);
      exit_status = 1;
      goto END;
    }

  if (iuser[0] != n)
    {
      printf("\nNumber of function evaluations = %" NAG_IFMT "\n\n", iuser[0]);
    }
  /* nag_gen_complx_mat_print (x04dac).
   * Print complex general matrix (easy-to-use)
   */
  nag_gen_complx_mat_print(order, matrix, Nag_NonUnitDiag, n, n, a, pda,
                           "Hermitian f(A)=cos(kA)", outfile, &fail);
  if (fail.code != NE_NOERROR)
    {
      printf("%s\n", fail.message);
      exit_status = 2;
      goto END;
    }
 END:
  NAG_FREE(a);

  return exit_status;
}

static void NAG_CALL f(Integer *flag, Integer n, const double x[], double fx[],
                       Nag_Comm *comm)
{
  /* Scalars */
  Integer j;
  double  k;

  if (!comm->user[0])
    {
      *flag = -1;
    }
  else
    {
      k = comm->user[0];

      for (j = 0; j < n; j++)
        {
          comm->iuser[0]++;
          fx[j] = cos(k*x[j]);
        }
    }
}