/* nag_mldwt_3d (c09fcc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 24, 2013.
*/
#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagc09.h>
#include <nagx02.h>
#define A(I,J,K) a[I-1 + (J-1)* lda + (K-1)* lda * sda]
#define B(I,J,K) b[I-1 + (J-1)* ldb + (K-1)* ldb * sdb]
#define E(I,J,K) e[I-1 + (J-1)* m + (K-1)* m * n]
#define D(I,J,K) d[I-1 + (J-1)* ldd + (K-1)* ldd * sdd]
int main(void)
{
/* Scalars */
Integer exit_status = 0;
Integer lda, ldb, ldd, sda, sdb, sdd, lenc, i, j, k;
Integer m, n, fr, nwcfr, nwcm, nwcn, nwct, nwlmax, nwl, nwlinv, nf;
Integer want_coeffs, want_level;
double eps, esq, frob;
/* Arrays */
char mode[25], wavnam[25];
double *a = 0, *b = 0, *c = 0, *d = 0, *e = 0;
Integer *dwtlvfr = 0, *dwtlvm = 0, *dwtlvn = 0;
Integer icomm[260];
/* Nag Types */
Nag_Wavelet wavnamenum;
Nag_WaveletMode modenum;
Nag_MatrixType matrix = Nag_GeneralMatrix;
Nag_OrderType order = Nag_ColMajor;
Nag_DiagType diag = Nag_NonUnitDiag;
NagError fail;
INIT_FAIL(fail);
printf("nag_mldwt_3d (c09fcc) Example Program Results\n\n");
fflush(stdout);
/* Skip heading in data file and read problem parameters */
scanf("%*[^\n] %ld%ld%ld%*[^\n]", &m, &n, &fr);
lda = m;
ldb = m;
sda = n;
sdb = n;
scanf("%24s%24s%*[^\n]\n", wavnam, mode);
if (!(a = NAG_ALLOC((lda)*(sda)*(fr), double)) ||
!(b = NAG_ALLOC((ldb)*(sdb)*(fr), double))||
!(e = NAG_ALLOC((m)*(n)*(fr), double)))
{
printf("Allocation failure\n");
exit_status = 1;
goto END;
}
printf("Parameters read from file :: \n");
printf("MLDWT :: Wavelet : %s\n", wavnam);
printf(" End mode : %s\n", mode);
printf(" m : %4ld\n", m);
printf(" n : %4ld\n", n);
printf(" fr : %4ld\n\n", fr);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
wavnamenum = (Nag_Wavelet) nag_enum_name_to_value(wavnam);
modenum = (Nag_WaveletMode) nag_enum_name_to_value(mode);
/* Read data array */
for (k=1; k<=fr; k++)
{
for (i=1; i<=m; i++)
{
for (j=1; j<=n; j++) scanf("%lf", &A(i, j, k));
scanf("%*[^\n] ");
}
scanf("%*[^\n] ");
}
/* Print out the input data */
printf("Input Data :\n");
fflush(stdout);
for (k=1; k<=fr; k++)
{
/* nag_gen_real_mat_print_comp (x04cbc).
* Prints out a matrix.
*/
nag_gen_real_mat_print_comp(order, matrix, diag, m, n, &A(1, 1, k), lda,
"%8.4f"," ", Nag_NoLabels, 0,
Nag_NoLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_gen_real_mat_print_comp (x04cbc).\n%s\n",
fail.message);
exit_status = 2;
goto END;
}
printf("\n");
fflush(stdout);
}
/* nag_wfilt_3d (c09acc).
* Three-dimensional wavelet filter initialization
*/
nag_wfilt_3d(wavnamenum, Nag_MultiLevel, modenum, m, n, fr, &nwlmax, &nf,
&nwct, &nwcn, &nwcfr, icomm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_wfilt_3d (c09acc).\n%s\n", fail.message);
exit_status = 3;
goto END;
}
lenc = nwct;
if (!(c = NAG_ALLOC((lenc), double)) ||
!(dwtlvm = NAG_ALLOC((nwlmax), Integer)) ||
!(dwtlvn = NAG_ALLOC((nwlmax), Integer)) ||
!(dwtlvfr = NAG_ALLOC((nwlmax), Integer)))
{
printf("Allocation failure\n");
exit_status = 4;
goto END;
}
nwl = nwlmax;
/* nag_mldwt_3d (c09fcc).
* Three-dimensional multi-level discrete wavelet transform
*/
nag_mldwt_3d(m, n, fr, a, lda, sda, lenc, c,
nwl, dwtlvm, dwtlvn, dwtlvfr, icomm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_mldwt_3d (c09fcc).\n%s\n", fail.message);
exit_status = 5;
goto END;
}
printf("Number of Levels : %4ld\n", nwl);
printf("Number of coefficients in 1st dimension for each level:\n");
for (i=0; i<nwl; i++)
{
printf("%4ld%s", dwtlvm[i], i+1%8 ? "" : "\n");
}
printf("\n");
printf("Number of coefficients in 2nd dimension for each level:\n");
for (i=0; i<nwl; i++)
{
printf("%4ld%s", dwtlvn[i], i+1%8 ? "" : "\n");
}
printf("\n");
printf("Number of coefficients in 3rd dimension for each level:\n");
for (i=0; i<nwl; i++)
{
printf("%4ld%s", dwtlvfr[i], i+1%8 ? "" : "\n");
}
printf("\n\n");
fflush(stdout);
/* Print the first level HLL coefficients*/
want_level = 1;
want_coeffs = 4;
/* Use the extraction routine c09fyc to retrieve the required
* coefficients.
*/
nwcm = dwtlvm[nwl - want_level];
nwcn = dwtlvn[nwl - want_level];
nwcfr = dwtlvfr[nwl - want_level];
ldd = nwcm;
sdd = nwcn;
if (!(d = NAG_ALLOC((ldd)*(sdd)*(nwcfr), double)))
{
printf("Allocation failure\n");
exit_status = 6;
goto END;
}
/* nag_wav_3d_coeff_ext (c09fyc).
* Extract coefficients into a 3D array D.
*/
nag_wav_3d_coeff_ext(want_level,want_coeffs,lenc,c,d,ldd,sdd,icomm,&fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_wav_3d_coeff_ext (c09fyc).\n%s\n", fail.message);
exit_status = 7;
goto END;
}
/* Print the details of the level */
printf("-----------------------------------------------------\n");
printf("Level : %4ld", want_level);
printf("; output is %4ld", nwcm);
printf(" by %4ld", nwcn);
printf(" by %4ld\n", nwcfr);
printf("-----------------------------------------------------\n\n");
/* Print out the selected set of coefficients*/
switch (want_coeffs)
{
case 0:
printf("Approximation coefficients (LLL)\n");
break;
case 1:
printf("Detail coefficients (LLH)\n");
break;
case 2:
printf("Detail coefficients (LHL)\n");
break;
case 3:
printf("Detail coefficients (LHH)\n");
break;
case 4:
printf("Detail coefficients (HLL)\n");
break;
case 5:
printf("Detail coefficients (HLH)\n");
break;
case 6:
printf("Detail coefficients (HHL)\n");
break;
case 7:
printf("Detail coefficients (HHH)\n");
break;
}
printf("Level %4ld", want_level);
printf(", Coefficients %4ld:\n", want_coeffs);
for (k=1; k<=nwcfr; k++)
{
printf(" Frame %4ld :\n", k);
for (i=1; i<=nwcm; i++)
{
for (j=1; j<=nwcn; j++)
{
printf("%8.4f%s", D(i, j, k), j%8 ? "" : "\n");
}
printf("\n");
}
}
fflush(stdout);
nwlinv = nwl;
/* nag_imldwt_3d (c09fdc).
* Three-dimensional inverse multi-level discrete wavelet transform
*/
nag_imldwt_3d(nwlinv, lenc, c, m, n, fr, b, ldb, sdb, icomm, &fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_imldwt_3d (c09fdc).\n%s\n", fail.message);
exit_status = 8;
goto END;
}
/* Check reconstruction matches original*/
eps = 10.0 * (double)(m) * (double)(n) * (double)(fr) *
nag_machine_precision;
for (k=1; k<=fr; k++)
for (j=1; j<=n; j++)
for (i=1; i<=m; i++)
E(i, j, k) = B(i, j, k) - A(i, j, k);
frob = 0.0;
for (k=1; k<=fr; k++)
{
esq = 0.0;
for (j=1; j<=n; j++)
{
for (i=1; i<=m; i++)
{
esq = esq + pow(E(i, j, k), 2);
}
frob = MAX(frob, sqrt(esq));
}
}
if (frob>eps)
{
printf("\nFail: Frobenius norm of B-A, where A is the original \n"
"data and B is the reconstrucion, is too large.\n");
}
else
{
printf("\nSuccess: the reconstruction matches the original.\n");
}
END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(c);
NAG_FREE(d);
NAG_FREE(e);
NAG_FREE(dwtlvfr);
NAG_FREE(dwtlvm);
NAG_FREE(dwtlvn);
return exit_status;
}